# ARTICLE

# KUJIRA, a package of integrated modules for systematic and interactive analysis of NMR data directed to high-throughput NMR structure studies

Naohiro Kobayashi · Junji Iwahara · Seizo Koshiba · Tadashi Tomizawa · Naoya Tochio · Peter Güntert · Takanori Kigawa · Shigeyuki Yokoyama

Received: 14 March 2007/Accepted: 15 June 2007/Published online: 18 July 2007 © Springer Science+Business Media B.V. 2007

Abstract The recent expansion of structural genomics has increased the demands for quick and accurate protein structure determination by NMR spectroscopy. The conventional strategy without an automated protocol can no longer satisfy the needs of high-throughput application to a large number of proteins, with each data set including many NMR spectra, chemical shifts, NOE assignments, and calculated structures. We have developed the new software KUJIRA, a package of integrated modules for the systematic and interactive analysis of NMR data, which is designed to reduce the tediousness of organizing and manipulating a large number of NMR data sets. In combination with CYANA, the program for automated NOE assignment and structure determination, we have established a robust and highly optimized strategy for comprehensive protein structure analysis. An application of KUJIRA in accordance with our new strategy was carried out by a non-expert in NMR structure analysis, demonstrating that the accurate assignment of the chemical shifts and a high-quality structure of a small protein can be

N. Kobayashi · S. Koshiba · T. Tomizawa · N. Tochio · P. Güntert · T. Kigawa · S. Yokoyama (⊠) RIKEN Genomic Sciences Center, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan e-mail: yokoyama@biochem.s.u-tokyo.ac.jp

J. Iwahara · S. Yokoyama University of Tokyo, Tokyo 113-0033, Japan

Present Address:

J. Iwahara

Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA

T. Kigawa

Tokyo Institute of Technology, Yokohama 226-8502, Japan

completed in a few weeks. The high completeness of the chemical shift assignment and the NOE assignment achieved by the systematic analysis using KUJIRA and CYANA led, in practice, to increased reliability of the determined structure.

**Keywords** NMR · Structure determination · High-throughput · Software · KUJIRA · CYANA · NMRView

#### Abbreviations

| NOESY | Nuclear Overhauser effect spectroscopy |
|-------|----------------------------------------|
| HSQC  | Heteronuclear single quantum coherence |
| SASA  | Solvent accessible surface area        |
| TOCSY | Total correlated spectroscopy          |

# Introduction

As demands for protein structure determination by NMR are increasing, especially with the recent expansion in structural genomics, high-throughput techniques are strongly desired. Nowadays, several protocols have been established for the NMR structure determination of moderately sized proteins (smaller than 20 kDa). Considering a structure analysis using modern NMR techniques for a uniformly <sup>13</sup>C and <sup>15</sup>N labeled protein, the most widely used strategies can be roughly divided into six stages: (i) spectrum data acquisition, (ii) spectrum data processing, (iii) chemical shift assignment of <sup>1</sup>H, <sup>13</sup>C, and <sup>15</sup>N signals, (iv) nuclear Overhauser effect (NOE) assignment and preparation of <sup>1</sup>H–<sup>1</sup>H distance constraints, (v) structure calculation and (vi) validation of the calculated structures.

In addition to the NOE based distance constraints, dihedral angle constraints and residual dipolar coupling and hydrogen-bonding related constraints are often applied in the structure calculation, if the relevant experimental data sets are available. Although the non-NOE based structural constraints can increase the accuracy of the determined structure, the NOE based distance constraints play a major role in the structure determination process. This is because NOEs are relatively easy to obtain, given their power in structure determination. They thus have a much higher cost performance than other types of NMR data, and are suitable for a high-throughput approach.

The most important data for the structure calculation, <sup>1</sup>H–<sup>1</sup>H distance constraints, are extracted from assignments of NOEs observed in multi-dimensional NOESY spectra. 3D <sup>15</sup>N or <sup>13</sup>C edited NOESY spectra are preferably used for the extraction of the NOEs, because they presently offer the best compromise between spectral resolution and measurement time needed for their acquisition. The completeness and accuracy of the chemical shift assignments of the <sup>1</sup>H, <sup>15</sup>N, and <sup>13</sup>C signals are crucial for the NOE assignments, and are thus considered first in the NMR analysis. For the NMR chemical shift assignments, a number of 2D and 3D spectrum data sets are normally required, e.g., 4-6 spectra for main-chain signals and 3-4 spectra for side-chain signals. The spectroscopic problems associated with chemical exchange, fast relaxation, severe signal overlap, and/or slight irreproducibility of signal positions among spectra can interfere with achieving complete assignments. Therefore, it is difficult to reach more than 95% accuracy of the chemical shift assignments without any prior knowledge of the correct protein structure. In a structure calculation, distance constraints can be misinterpreted because of missing or erroneous chemical shift data, which lead to distortions in the calculated structure. The next point to consider in an NMR analysis predominantly using NOE derived constraints is the accuracy of the NOE assignments. A total of 4000-6000 NOE peaks and 1500–2000 <sup>1</sup>H–<sup>1</sup>H distance constraints are typically expected from heteronuclear edited NOESY spectra for a <sup>15</sup>N- and <sup>13</sup>C-labeled protein with a molecular weight around 10 kDa. It is not unusual for three or four <sup>1</sup>H, <sup>15</sup>N, and <sup>13</sup>C signals to be nearly degenerate in a certain place on the 2D HSQC spectrum, and they will be more severely overlapped in the 2D projection of the 3D spectrum data. Due to the degeneracy of the chemical shifts, many NOE peaks will initially be attributed ambiguous assignment possibilities composed of multiple spin pairs. The number of candidates ambiguously assigned is sometimes more than 100, depending on the degeneracy of the signals to be assigned for each spin pair. Including all possible candidates, the number of initial NOE assignments would exceed several tens of thousands. Additionally, small amounts of spectral noise and artifacts unavoidably remain in the large number of NOE peaks in a standard NMR analysis. The interactive effort to iteratively validate, correct, and consolidate such a tremendous number of NOE assignments and to interpret them into distance constraints would occupy a well-experienced NMR scientist for more than a few months.

In order to overcome the obstacles mentioned above. automated or semi-automated methods are the most promising approach to conduct NMR analyses more reliably and with high-throughput. There are many computational programs that attempt automated or semi-automated NOE analysis, as reviewed recently (Altieri and Byrd 2004; Baran et al. 2004; Gronwald and Kalbitzer 2004; Güntert 2003; Nilges and O'Donoghue 1998). The program CYANA (Güntert 2003) includes automated NOE assignment (Herrmann et al. 2002) and structure calculation by torsion angle dynamics (Güntert et al. 1997), and is suitable for high-throughput NMR studies. The new strategies utilized in CYANA, "constraint combination" and "network anchoring" (Herrmann et al. 2002), facilitate finding the correct structure, even if the NOE peak lists contain many artifacts and noise. The reliability of the NOE assignment and the accuracy of the calculated structure have been demonstrated with 90% completeness of the chemical shift assignment (Jee and Güntert 2003). These features of CYANA allow users to concentrate on completing the chemical shift assignment table and the NOE peak table in the early stage of the NMR analysis, rather than on assigning individual NOE cross peaks. In spite of the robustness of the CYANA calculation, especially for the determination of a global chain fold, further completion and refinement of the chemical shift assignments are usually applied to attain higher accuracy in the local regions of the structure. This means that, in the final stage of the NMR analysis, we have to search for the remaining unassigned NOEs and the unidentified NMR signals that may lead CYANA to calculate a structure with a local inaccuracy. Such a structural fault is not critical, but can be enough to confuse a structure-based prediction of the protein function in a future study, if it is located in a putative interaction site of the protein. In the final stage of the analysis, the amount of erroneous data must be extremely small, and a formidable effort is required to eliminate these potential problems. The conventional interactive approaches, such as iteratively scrutinizing the spectrum data sets, the chemical shift table, the NOE peak table and the calculated structure data, can minimize the problem; however, they are timeconsuming and greatly reduce the ease of the automated NOE assignment by CYANA, unless there is a smart system to integrate the enormous amount of NMR data. The integration of several analysis tools related to NMR determination into one platform is a promising idea to reduce the tediousness, as they are all based on the concept of standardizing the protocols and the data format. The CCPN data model has been proposed to develop data organization and software pipelines (Fogh et al. 2002, 2005; Vranken et al. 2005). The key feature of the data model is an application programming interface (API) to unify the development of future NMR-related software. The spectral visualization software, ANSIG v3.3, is an example of software development over the CCPN data model (Helgstrand et al. 2000; Kraulis 1989). The SPINS data model has also been proposed, to develop a program suite that can accommodate any type of NMR-related software (Baran et al. 2002). These program suites and systems would work to significantly promote a wide variety of NMR studies if appropriately installed in an NMR laboratory; however, it is still not very easy to introduce them, especially for a non-NMR scientist in a small laboratory who has a good NMR sample and wants a quick analysis.

There are many interactive spectrum analysis programs, e.g., ANSIG (Helgstrand et al. 2000; Kraulis 1989), AURELIA (Neidig et al. 1995), CARA (http://www. nmr.ch), FELIX (FELIX NMR, Inc.), NMRView (Johnson and Blevins 1994), Olivia (http://www.fermi.pharm. hokudai.ac.jp/olivia/), Sparky (Goddard and Kneller 2001), and XEASY (Bartels et al. 1995), which can be used to visualize multidimensional NMR spectra. The distinctive features of NMRView include its capability for directly interpreting a common scripting language, Tcl/Tk, and its high performance in quickly drawing contour plots of 2D planes from multi-dimensional spectra. Relying on these features, several software add-ons, such as Smartnotebook (Slupsky et al. 2003) and NvAssign (Kirby et al. 2004), have been released.

Here, we have developed a new software package, called KUJIRA, consisting of integrated modules for the systematic and interactive analysis of NMR data. NMR-View is used together with KUJIRA for controlling spectrum windows and for executing external Tcl/Tk source code and C programs. The modules of KUJIRA are designed to simultaneously accommodate a large number of spectrum data sets, chemical shift data, NOE peak data, NOE assignment data, and structure data, which are systematically organized (Fig. 1). One module in KUJIRA can import output files from an automated NOE assignment performed by CYANA and control the spectrum windows based on the NMR parameters related to the NOE peaks. Another module of KUJIRA is used to assess the structural quality of the calculated structures. It facilitates the analysis of the geometrical features of the calculated structure, i.e., the solvent accessible surface area, the distributions of the dihedral angles  $(\phi, \psi)$ , and  $(\chi^1, \chi^2)$ , and the secondary structure elements. The modules of KUJIRA seamlessly control the chemical shift tables, the spectrum windows and the NOE assignment tables, so that users can intuitively and expeditiously address artifact or noise peaks in the NOE peak table as well as misassignments in the chemical shift table. These functions in KUJIRA allow users not only to obtain highly accurate chemical shifts but also to save a considerable amount of time during the structure refinement. In this article, we will describe the construction of the NMR program suite KUJIRA. and the functional modules in KUJIRA to apply the

Fig. 1 KUJIRA modules and other software used for the NMR structure studies. The scheme illustrates how the modules in KUJIRA interact with other software and NMR data used for NMR analyses (see details in the text). All of the modules in KUJIRA can share the loaded NMR data, such that the user can interactively control the spectrum windows, based on the chemical shift and NOE assignments



semi-automated NMR signal assignments required for the fully automated NOE assignment and structure calculation program CYANA, as well as a strategy specifically directed to high-throughput NMR structure studies, using the functions of KUJIRA in conjunction with CYANA.

# Materials and methods

## Construction of the software, KUJIRA

The scriptable and graphics-based program NMRView is used to display and control the 2D and 3D spectrum contour plots. The C programming language version of NMRView, available from One Moon Scientific Inc. (http://www.onemoonscientific.com), works on a variety of computer platforms. The intrinsic capability of NMRView to load and interpret external Tcl/Tk sources is utilized in the KUJIRA package to build the graphical user interface (GUI) and for the numerous subroutines that implement the functions of KUJIRA. In addition, the external C programs included in the KUJIRA package are accessed from the subroutines to achieve a high performance for computation-intensive numerical calculation jobs. The KUJIRA modules described in this paper are shown in the scheme of Fig. 1, which illustrates how the modules in KUJIRA interact with other software and with the NMR data used for the structure analysis.

#### Startup module

The graphical interface of the Startup module, shown in Fig. 2, appears first when the user starts KUJIRA. Using the interface, the user can readily specify the file names and the directory path names of the spectrum data sets, as well as the parameters for drawing their contour plots. Once the user launches NMRView from the startup module, the graphical interfaces and subroutines inherently implemented in NMRView are transiently created. Some of the menus of graphical interfaces and subroutines are suppressed by the Startup module of KUJIRA, and then this is followed by the construction of the other KUJIRA graphical interfaces and subroutines for making networks linked to the spectrum windows, chemical shift data, NOE assignment data and structure data. After these preliminary jobs, the NMRView startup is completed by restructuring the spectrum windows and the graphical interfaces of the KUJIRA modules, according to the preferences specified in the Startup module.

| 13hsqc.nv<br>13noesv.m |            |          |    | 1120 | ener name         | 2D spe       | ctra<br>width |      | ort ein  | n fold | Vial  | ulah |         |
|------------------------|------------|----------|----|------|-------------------|--------------|---------------|------|----------|--------|-------|------|---------|
| Cbcaconh.m             | v          |          |    | 1 20 | 15M-MROCI         | nie_name     | 0.8           | 30.0 | nos/neg  | 90/180 | HN    | N    |         |
| Ccconnh.nv             |            |          |    | 1 20 | 15W-HSQCI         | Intensient   | 0.0           | 00.0 | posmeg   | 500100 |       | -    |         |
| Incacb.nv              |            |          |    | 1 20 | 15W-Hogoz         |              | _             | -    |          |        | -     | -    |         |
| inco.nv                |            |          |    | 1 20 | 15N-HSQC5         |              |               | -    |          | -      | -     | -    |         |
| incoca.nv              |            |          |    | 1 20 | 2D_OCHEFI         | -            |               | -    |          |        |       | -    |         |
| 15hsqc.nv              |            |          | -  | 1 20 | 2D_other2         |              |               | _    | <u></u>  |        |       | -    |         |
| Tonocsy In             | 1          |          | N. | J 2D | 2D_other3         |              |               | -    |          |        | _     | -    |         |
| 15N                    | 13C-al     | 13C-ar   | 1  | 1 20 | 2D_other4         | 20.000       | -             |      | )        | -      |       |      | 1 de la |
| SI                     | now me n   | nore     |    | 1150 | ener name         | 50 spe       | ctra<br>width | aene | ct sign  | fold   | viah  | viah | via     |
| _ Rec                  | over *.x   | ok state |    | 1 30 | HNCO              | Hnco.nv      | 1.50          | 40.0 | pos      | 0/0    | HN    | C    | N       |
| Sav                    | e pref.tx  | t always |    | 30   | HN(CA)CO          | Hncacolov    | 1.50          | 40.0 | pos      | 0/0    | HN    | C    | N       |
| Works                  | ng direct  | ory      | _  | 30   | HN(CO)CA          | Chcaconh ny  | 1.50          | 40.0 | nos      | 0/0    | HN    | C    | N       |
| -mv_uo                 | metion     | 2.3      |    | 30   | HNCA              | Hocach ov    | 1.50          | 40.0 | nos/neg  | 0/0    | HN    | C    | N       |
| Y-tomi                 | nat luinte | m m      |    | 20   | CBCA (CO)NW       | Cheaconh ny  | 1.50          | 40.0 | nos      | 0/0    | HN    | C    | N       |
| A-term                 | nen fanne  |          |    | 30   | HNCACE            | Hocach py    | 1.50          | 40.0 | nos/nen  | 0/0    | HN    | C    | IN      |
|                        |            |          | 16 | 1 20 | NEWA (CO) NW      | Threecont    |               | 40.0 | poaring  |        |       | -    | F       |
|                        |            |          |    | 1 20 | HEHANU            |              |               | -    |          | -      | -     | -    | -       |
|                        |            |          |    | 20   | CC(CO)NH          | Cccomph py   | 1.50          | 40.0 | Inos     | 0/0    | HN    | 1    | N       |
|                        |            |          |    | 1 20 | H(CC) (CO)NH      |              | 1.00          | 40.0 | pos      |        | in a  | -    | Ê       |
|                        |            |          |    | 30   | 15N-NOFEY         | n15nnesy ny  | 3.50          | 40.0 | pos/nen  | 90/180 | HN    | H    | N       |
|                        |            |          |    | 30   | LON-NOREY         | Juronoceyaty | 0.00          | 40.0 | positieg | 00100  | ind i | -    | -       |
|                        |            |          | 1  | 1 20 | 20 okheri         |              |               | -    |          | -      | -     | -    | 1       |
|                        |            |          |    | 1 30 | 3D_other1         |              |               | -    | -        | -      | -     | -    | -       |
|                        |            |          |    | 1 30 | 3D_other2         |              |               | -    |          | _      | -     | -    | -       |
|                        |            |          | -  | 30   | SD_OCHERS         |              |               |      | -        | _      | -     |      | 1_      |
|                        |            |          |    | 1 20 | And and because & |              |               |      |          |        |       |      |         |

Fig. 2 The graphical interface of the Startup module in KUJIRA. Prior to the analysis, the user must specify the spectrum data sets and several parameters in this module. The small list-box on the upper left of the interface displays the currently available spectrum data sets, from which the user may select one to transfer into the entries of the corresponding spectrum type on the right side of the interface. The parameters to configure a narrow region of 2D spectra can also be specified on the entries arrayed on the same spectrum entry row. The check-buttons, on the left of the spectrum name labels, are used to select the spectra that are being loaded for the current analysis. The buttons just below the list-box convert the interface mode between the different "Sync-Jump" types: <sup>15</sup>N-, <sup>13</sup>C-aliphatic, and <sup>13</sup>C-aromatic

#### Sync-Jump module

The synchronized spectrum jump system, referred to as "Sync-Jump", is the most important function of KUJIRA. Each of the loaded spectrum data sets is attributed to one of the Sync-Jump classes, as specified in the startup module. The Sync-Jump commands synchronize and simultaneously display groups of 2D spectrum strips extracted from 3D spectra attributed to the same Sync-Jump class, while concurrently changing their drawing position in the 2D HSOC projection. The 2D HSOC spectra are similarly controlled by the Sync-Jump command to display the narrow region centering on the currently specified position. As the default setting, three Sync-Jump classes are available, namely <sup>15</sup>N- and <sup>13</sup>C-aliphatic and <sup>13</sup>C-aromatic, respectively corresponding to the Sync-Jump action on the 2D <sup>1</sup>H-<sup>15</sup>N, <sup>1</sup>H-<sup>13</sup>C for the aliphatic and aromatic signalscorrelated spectrum projection of the 3D spectrum. All modules in KUJIRA provide Sync-Jump commands, so the user can expeditiously manipulate the number and contents of the spectrum windows shown. There are two ways to provide chemical shift information to the Sync-Jump command. In the first way, the command is simply executed with the given chemical shifts of a <sup>1</sup>H and a heavy atom dimension. For instance, this function works by clicking on the 2D-HSQC type spectrum window in the "Click-and-Jump mode", which gives the chemical shifts at the clicked position, and then triggers the simultaneous display of the 2D spectrum strips extracted from the 3D spectra attributed to the same Sync-Jump class. During NOE peak analysis, this protocol is also helpful to manipulate the 3D NOESY spectra as well as the other 3D spectra used for fine adjustments of the assigned chemical shifts. The second Sync-Jump protocol is based on groups of atoms with assigned chemical shifts, and requires the chemical shift assignments of both the protons and heavy atoms of interest. Using this protocol, Sync-Jump commands are provided to the Chemical shift database module, the module for the analysis of NOE assignments, and the module for the structure quality assessment, as described below. The subroutines responsible for the "Sync-Jump" functionality are integrated in the Sync-Jump module of KUJIRA.

# Chemical shift database module

The Chemical shift database module of KUJIRA is used to manage the database of experimentally determined chemical shifts for the signals of proton, nitrogen, and carbon atoms. The module provides several graphical interfaces (Fig. 3). One of them, the main graphical interface shown in Fig. 3A, can display the assigned chemical shift data for a desired amino acid residue. The pop-up window from the main graphical interface shown in Fig. 3B allows the user to interactively input and correct the chemical shifts directly from the spectrum at any axis, by clicking on the spectrum window. The Chemical shift database module provides a function to automatically examine the validity of the defined chemical shifts, by comparing them with the chemical shift statistics for proteins derived from the (http://www.bmrb.wisc.edu/). BMRB database Anv anomalous chemical shift can immediately be highlighted with an alert message in the main graphical interface. Since, this module provides the Sync-Jump command, to control the strips from 3D spectra based on the values in the chemical shift table, the user is able to confirm and correct the signal assignments for each residue by directly observing the related 2D strips. The window shown in Fig. 3C is used for simultaneously confirming all of the chemical shifts of the main-chain and side-chain signals of the currently analyzed residue. In the graphical interface, 2D spectrum strips extracted from 3D NOESY or TOCSY spectra are arrayed to display narrow regions corresponding to the spectrum positions of the assigned main-chain and side-chain signals. The cross-peaks based on the assignment of intra-residual signals (and sequential signals for NOESY) are indicated with the blue boxes in each 2D spectrum strip. The most powerful function of this interface is that the user can intuitively notice an inaccuracy in the defined chemical shifts, by monitoring the expected intraresidual and sequential NOEs in the arrayed spectrum strips, thus helping to interactively update the chemical shifts by clicking on the appropriate spectrum position. Another pop-up graphical interface (Fig. 3D) displays the amino acid sequence of the analyzed protein and informs the user about the completeness of the assignments by color-coded buttons.

Semi-automatic assignment module

KUJIRA has a module for the semi-automated sequencespecific assignment of the main-chain signals, based on the  ${}^{13}C_{\alpha}$ ,  ${}^{13}C_{\beta}$ , and  ${}^{13}C'$  signals derived from the triple resonance spectra, including several graphical interfaces (see Figs. 4-6) and a key external C program, "QuickAssign." The QuickAssign program performs the assignment jobs that are described in Fig. 5, based on the basic main-chain assignment information, such as the peak IDs and chemical shifts of  ${}^{1}H_{N}$ ,  ${}^{15}N_{\alpha}$  and the sequential and intra-residual  ${}^{13}C_{\alpha}$ ,  ${}^{13}C_{\beta}$ , and  ${}^{13}C'$  signals. Prior to running the program, the user has to prepare the information manually or automatically. There is a tool for creating a text file listing the identified peak IDs, corresponding to the  ${}^{1}H_{N}$  signal correlations from the peak table file of 2D or 3D heteronuclear correlation spectra, such as <sup>1</sup>H-<sup>15</sup>N HSQC, 3D HNCO, and 3D-HN(CO)CA. The user is allowed to



Fig. 3 (A) The main graphical interface of the Chemical shift database module. This interface displays the assigned chemical shift data for a desired amino acid residue. Each row in the list-box indicates the atom name, the assigned chemical shift value, and the ambiguity status of the assigned signal; "ambig" means ambiguously assigned, "degen" means the signals are degenerate, and "stereo" means stereo-specifically assigned. (B) Pop-up graphical interface from the main graphical interface for the proton signal of Met8-H $\beta$ 2. The assigned chemical shift is displayed in the center of the interface. The user may edit the assigned chemical shift or the ambiguity status of the signal. The spectrum strips associated with this atom can readily be accessed from this interface by Sync-Jump commands. (C) Pop-up graphical interface for the main graphical interface, for the confirmation and correction of the main-chain and side-chain signal

identify the sequential and intra-residual  ${}^{13}C_{\alpha}$ ,  ${}^{13}C_{\beta}$ , and  ${}^{13}C'$  signals, which can be observed on the indirect dimension of the  ${}^{1}H{}^{-15}N$  position specified by the peak ID from the 3D triple resonance spectra and a graphical interface (Figs. 4A, B), either manually or automatically. After the preparation of the text file describing the basic main-chain information, the user can run the automated sequence-specific assignment C program, "QuickAssign", to search for the segments of peak IDs. QuickAssign quickly performs automated sequential assignments based

assignments. It displays the relevant 2D spectrum strips extracted from the 3D-NOESY spectra. The arrayed 2D spectrum strips show narrow regions corresponding to the assigned  ${}^{1}\text{H}{-}^{15}\text{N}$  or  ${}^{1}\text{H}{-}^{13}\text{C}$ signal positions. The expected intra-residue and sequential-cross peaks are indicated by blue boxes, labeled with the assignment of the signals in the indirect dimension using simplified nomenclature, such as *n*: HN(*i*), *n* – 1: HN(*i* – 1), *a*: H $\alpha(i)$  and so on. The chemical shifts can be interactively adjusted by mouse operations. (**D**) Pop-up graphical interface from the main graphical interface that represents the amino acid sequence of the currently analyzed protein. The labels on the buttons indicate the one-letter amino acid code and the residue number. The buttons are used to switch the information displayed in the main graphical interface of the Chemical shift database module

on the semi-exhaustive search algorithm, as shown in the program flow chart (see Fig. 5). The program makes a nonredundant list of all possible segments, by finding and linking the peak IDs based on the sequential connectivity of the identified  ${}^{13}C_{\alpha}$ ,  ${}^{13}C_{\beta}$ , and  ${}^{13}C'$  signals, using the specified error tolerance (default values are set at 0.3 ppm for all atom types). QuickAssign maps the segment *x* at the residue number *k* on the amino acid sequence of the sample protein, and evaluates the penalty value P(x,k) based on the following Eqs. 1 and 2.

$$P(x,k) = \frac{\sum_{i=1}^{N(x)} X^{\alpha\beta}(x,k,i)}{N(x)}$$
(1)

where  $X^{\alpha\beta}(x,k,i)$  is the probability value for the segment *x* at the *i*-th residue for  ${}^{13}C_{\alpha}/{}^{13}C_{\beta}$ , which is given by:

$$t_i = \left(\frac{A_i^{\alpha} - \bar{A}_{R(k+i-1)}^{\alpha}}{\delta_{R(k+i-1)}^{\alpha}}\right)^2 + \left(\frac{A_i^{\beta} - \bar{A}_{R(k+i-1)}^{\beta}}{\delta_{R(k+i-1)}^{\beta}}\right)^2 \tag{2}$$

$$\begin{cases} X^{\alpha\beta}(x,k,i) = t_i & \text{if } i = 1 \text{ or } (i > 1, \ t_i \le t_{i-1}) \\ X^{\alpha\beta}(x,k,i) = t_{i-1} & \text{if } (i > 1, \ t_i > t_{i-1}) \end{cases}$$

where  $A_i^{\alpha}$  and  $A_i^{\beta}$  are the chemical shifts for the identified  ${}^{13}C_{\alpha}$  and  ${}^{13}C_{\beta}$  signals, respectively, and  $\bar{A}_{R(k+i-1)}^{\alpha/\beta}$  and  $\delta_{R(k+i-1)}^{\alpha/\beta}$  are the average and standard deviation, respectively of the  ${}^{13}C_{\alpha}/{}^{13}C_{\beta}$  signal corresponding to amino acid type *R* at residue k + i - 1. The average and standard deviation are derived from the restricted statistics calculated for the amino acid specific  ${}^{13}C_{\alpha}$  and  ${}^{13}C_{\beta}$  chemical shifts in the BMRB database.

The mapped segment will be judged by the following criteria: (1) the mapped segment on the residue number kshould have the best penalty value P(x,k) three times as low as the secondary one, (2) the penalty value must be below the specified maximal value, Maxp, (3) the segment is longer than the specified minimal length, Minl, (4) it does not include any sequential connectivity with the amount of used chemical shift information below the minimal value, Minc and (5) it does not include ambiguous connectivities greater than the specified value, Amb. If the mapped segment satisfies all of these criteria, then the N- and C-terminal residues of the segment are truncated, and the peak IDs included in the segment will be suppressed in the subsequent assignment step. If the longer segment contains the identical peak ID sequence of the shorter one and they satisfy the criteria, then the longer one is chosen. After four rounds of iterative assignment steps, the best-mapped segments are displayed on the graphical interface along with the calculated penalty values, as shown in Fig. 4E and F. If the user finds that the segments are correctly mapped, then the user can assign the segment permanently on the graphical module. The performance of the program, from loading the assignment data to displaying the best results of mapping the segments, depends on the number of identified peak IDs and the length of the sample protein. For a 100-150 residue protein, the calculation typically takes 0.5-1.0 s on a standard PC or workstation. The completeness of the assignments is around 70-80% using the default setting parameters, as in the example shown in Table 1, and it also depends on the completeness of the user-prepared information for the main-chain assignment. If there are many missing signals, minor peaks, artifact peaks, some repeated sequence in the protein sequence, it will be very difficult to achieve the complete assignment of the main-chain signals by only using QuickAssign.

Since the module achieves the sequence-specific assignments of the main-chain signals using the abovementioned method based on well-separated peak IDs, the assignments may fail if many peak IDs of the  ${}^{1}\text{H}_{N}{-}^{15}\text{N}_{\alpha}$  signals are missing, because of severe overlapping. In this case, the search function on the main graphical module is helpful to discover the potential peaks. The module can search for the sequential residue at the (i - 1) or (i + 1) position by calculating the values from the spectrum intensity of 3D triple resonance spectra, using the identified chemical shifts of  ${}^{13}\text{C}_{\alpha}$ ,  ${}^{13}\text{C}_{\beta}$ , and  ${}^{13}\text{C}'$  signals, as described in Fig. 4B.

The sequential connectivities of the assigned peak IDs can be confirmed on a graphical interface (Figs. 6A, B), where the 2D spectrum strips extracted from the 3D spectra corresponding to the peak ID position of the assigned segments are arrayed, and the identified <sup>13</sup>C signal positions are indicated with the blue boxes. There is an assignment assessment tool, "CheckAssign", which can be used to find problems in the sequence-specific assignments. It allows the user to correct them interactively on a graphical interface, as shown in Figs. 6C and D.

After the semi-automated main-chain signal assignments, the user can export the assigned chemical shifts to the chemical shift database. In addition to the data exportation, the user is allowed to assign the  ${}^{1}H_{\alpha}$  and  ${}^{1}H_{\beta}$  signals, if 2D  ${}^{1}H^{-13}C$  HSQC and 3D HBHA(CBCACO)NH spectra are available. The external C program automatically picks the peaks on 2D  ${}^{1}H^{-13}C$  HSQC and 3D HBHA(CBCAC-O)NH, then tries to find peaks in the spectrum region corresponding to the assigned  ${}^{13}C_{\alpha}$  and  ${}^{13}C_{\beta}$  signals. Only the signals with corresponding  ${}^{1}H_{\alpha}^{-13}C_{\alpha}$ , and  ${}^{1}H_{\beta}^{-13}C_{\beta}$  peaks found on both 2D  ${}^{1}H^{-13}C$  HSQC and 3D HBHA(CBCACO)NH are assigned.

# CYANA analysis modules

KUJIRA provides an interactive module to analyze the results of the automated NOE assignment by CYANA. The user can import a log file of the NOE assignments and inspect the results for each peak, including all of the assignment candidates, in the graphical interface shown in Fig. 7A. A variety of GUI features are implemented in this module: the increment and decrement buttons used for stepping through the assignment results with respect to the peak ID number, the menu buttons to switch between NOE peak lists, and between assigned and unassigned NOEs, and the checkboxes to skip NOE peaks that may not need to be inspected, such as those without or with small

**Fig. 4** (A) 2D spectrum strips extracted from the 3D triple resonance spectra, which can be used for the identification of <sup>13</sup>C signals for sequence-specific main-chain signal assignments. By the "Sync-Jump" function of KUJIRA, the spectrum strips synchronously jump to the <sup>1</sup>H<sub>N</sub>–<sup>15</sup>N<sub> $\alpha$ </sub> position as their class is specified as "<sup>15</sup>N". (B) The function to predict the amino acid type for the sequential (*i* – 1) and current peak ID (*i*) can be carried out by pressing the button "TellMeResTP", using the chemical shifts,  $A_{\alpha}^{\alpha}$  and  $A_{\beta}^{\beta}$ , for the identified sequential or intra-residual <sup>13</sup>C'<sub> $\alpha$ </sub> and <sup>13</sup>C<sub> $\beta$ </sub> signals. The probability value P(i,R) for a amino acid type *R* is calculated by the following equation:

$$p = \left(\frac{A_i^{\alpha} - \bar{A}_R^{\alpha}}{\delta_R^{\alpha}}\right)^2 + \left(\frac{A_i^{\beta} - \bar{A}_R^{\beta}}{\delta_R^{\beta}}\right)^2 \quad (3)$$
$$P(i, R) = \frac{1}{2\pi\delta_R^{\alpha}\delta_R^{\beta}}\exp\left(-0.5p\right)$$

where  $\bar{A}_R^{\alpha/\beta}$  and  $\delta_R^{\alpha/\beta}$  are the average and standard deviation, respectively, of the  ${}^{13}C_{\alpha}/{}^{13}C_{\beta}$  signal corresponding to amino acid type *R*. These values are derived from the restricted statistics calculated for the amino acid specific  ${}^{13}C_{\alpha}$  and  ${}^{13}C_{\beta}$  chemical shifts in the BMRB database. The prediction function calculates the value, P(i,R), for all amino acid types, sorts them by the values in increasing order, and then displays the amino acid types with the value greater than  $10^{-4}$  in the one-letter code in the entry widgets, as indicated with the red boxes in (**B**). The function to search for the sequential peak IDs on the positions (i - 1) and (i + 1) can be carried out by pressing the "Search" button in the middle of the interface. The function calculates the sum of the spectrum intensity I(i,j) on the *xz*-positions specified with the chemical shifts of the  ${}^{14}$ N<sub>a</sub> and  ${}^{15}$ N<sub>a</sub> signals for the target peak ID *j* and on the *y*-position specified with the chemical shifts of the sequential or intra-residual  ${}^{13}$ C<sub> $\beta$ </sub> and  ${}^{13}$ C' signals of the current peak ID *i*.

$$I(i,j) = k_{\rm CO} \left| I^{\rm CO} \right| + k_{\alpha} |I^{\alpha}| + k_{\beta} \left| I^{\beta} \right| \quad (4)$$

associated violations of distance constraints. Together with the Sync-Jump command, the user can easily and quickly access the desired NOE peaks for inspection. The module has a function to display the 2D spectrum strip that is orthogonally transposed to the indirect dimension of the NOE assignment side-by-side with the spectrum strip of the current NOE peak, as shown in Fig. 7B. For a NOE with multiple ambiguous assignments, the user can switch to the symmetrical spectrum strip corresponding to another possible assignment candidate, by double-clicking it in the interface shown in Fig. 7A. In another mode of the interface (Fig. 7C), the NOE peaks can be filtered and sorted with respect to various parameters, such as the prime assignment candidate, the peak number, the peak intensity, the <sup>1</sup>H–<sup>1</sup>H upper distance bound, the observed violation, or the peak position on the x-, y-, or z-axis or in the xz-plane. The module has a function to evaluate the symmetry of the NOE peak assignments for which the intensity at the symmetrical position defined by the most probable NOE assignment is measured in the spectrum. If this intensity is greater than a user-specified threshold, then the peak entry is colored blue; otherwise, it is red. Another graphical

where the values  $k_{CO}$ ,  $k_{\alpha}$ , and  $k_{\beta}$  are normalization factors (default) values are 1.0) for the detected intensity,  $I^{CO}$ ,  $I^{\alpha}$ , and  $I^{\beta}$  of the spectra. If the calculated value I(i,j), multiplied by the factor specified on the entrance widgets of the graphical interface (indicated by the blue box), is below the specified threshold for each 3D spectrum; then the value will be zero. The scanned peak IDs are sorted by the calculated values and displayed on the list-box at the bottom of the graphical interface, if the value is greater than zero. By double-clicking on one of the items in the list-box, a spectrum strip window corresponding to the scanned peak ID will appear. (C) Pop-up graphical interface, displaying the amino acid sequence of the sample protein. The assigned residues are colored by cyan. By pressing the "Data to Acs" button on the bottom of the interface, the user can export the assigned chemical shifts to the assignment database module. The "Auto-AssignHAHB" button can be used to run the data exportation and the fully-automated assignment of the  ${}^{1}H_{\alpha}$  and  ${}^{1}H_{\beta}$  signals using 2D <sup>1</sup>H–<sup>13</sup>C HSQC and HBHA(CBCACO)NH spectra. (**D**) Pop-up graphical interface used for managing the main-chain assignment information, such as the peak ID, the chemical shifts of  ${}^{1}H_{N}$ ,  ${}^{15}N_{\alpha}$ , and the sequential and intra-residual  ${}^{13}C_{\alpha}$ ,  ${}^{13}C_{\beta}$ , and  ${}^{13}C'$  signals. The buttons labeled with the name of the item can be used to sort the peak ID information by the corresponding item type. (E) Pop-up graphical interface used to run the external C program "QuickAssign" (see text). The user can temporarily adjust all of the <sup>13</sup>C chemical shifts of the main-chain data, only for the functions of the modules, "QuickAssign" and "CheckAssign", by specifying the correction value of the entry in the interface. The tolerance values for making peak ID segments can also be adjusted in the entries on the interface (default values are 0.3 ppm for all atom types). (F) By doubleclicking one of the mapped segments in the interface of (E), a graphical interface will pop-up to display the detail of the mapped segment. The user can decide to permanently assign the mapped segment by pressing the button "Assign" on the top of the interface

interface is available for setting up a CYANA calculation (data not shown), in which the user can specify the version of CYANA and the path names of the NOE peak tables, and then save these settings for later use by the CYANA analysis module to properly interpret the CYANA output files. The interface can be used to prepare a directory for a CYANA calculation, and to create a sequence file, a chemical shift table, NOE peak tables and an initial settings file (init.cya) in the format required by CYANA.

Structure quality assessment module

The KUJIRA module for the quality assessment of calculated protein structures is implemented as an external C-program. The module can load a set of ensembled structures that are formatted in a variety of coordinate types, including DYANA and PDB file formats. The secondary structure elements are detected by the Kabsch and Sander method (Kabsch and Sander 1983), and the percentage of structures is evaluated for each residue in which the secondary structure is detected. The types of secondary structures with a percentage greater than 30% are classified



and displayed in the main graphical interface of the module (see Fig. 8A). The solvent accessible surface area for each amino acid residue is calculated, using the method established by Lee and Richards (1971). If the average solvent accessible surface area of the side-chain atoms is smaller than 30%, then the residue is judged to be buried inside the protein, as shown in Fig. 8B. The values of the dihedral angles  $\phi$ ,  $\psi$ ,  $\chi^1$ , and  $\chi^2$  are also calculated by the module. If

the values of a dihedral angle are clustered in two or more distinct conformations, then the module displays a caution message and reports details about the split dihedral angle conformation. The module can further perform a Ramachandran plot analysis for the main-chain angles  $(\phi, \psi)$ , according to the methods established and applied in the program PROCHECK (Laskowski et al. 1996) (Fig. 8A), and a rotamer analysis for the side-chain dihedral angles

(D)

| ite/F) Edit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a consider                                                                                        | 01011 0                                                                                                                                      | egmenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1010.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | essigned. re                                                                                                             | nor_assigness. r                          | gonn. 5                                                                                                                                                                | ordae                       | nee nee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| wick Save                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hada D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nto Sort                                                                                          | ince                                                                                                                                         | antina da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | marina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |                                           |                                                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Resno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Restn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | id id                                                                                             | HN                                                                                                                                           | easang ⊒ue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | co con-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                          | CA(1-1) CB                                | CB(1-1)                                                                                                                                                                | QuickAssion                 | SeaSearch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Resno Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | estp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | id                                                                                                | HN                                                                                                                                           | N C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 CO(i-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) CA                                                                                                                     | CA(1-1) CB                                | CB (1-1)                                                                                                                                                               | candidbak                   | candidfyd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KMHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11<br>44                                                                                          | 8.221<br>8.746                                                                                                                               | 123.801 1<br>119.716 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70.881 172.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43.182<br>3 52.767                                                                                                       | 56.247 999.990<br>43.111 32.158           | 61.805<br>999.990                                                                                                                                                      | 53-77<br>11-40-63           | 44-63<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HOWRENK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32<br>74                                                                                          | 8.111 8.198                                                                                                                                  | 121.223 1<br>113.575 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 73.605 170.72<br>70.013 173.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28 51.877<br>57.149                                                                                                      | 52.766 28.529<br>51.800 39.758            | 32.021<br>28.598                                                                                                                                                       | 6-14-32-55                  | 74-18-23-10 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DLYFN<br>VMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52<br>34                                                                                          | 8.515 9.209                                                                                                                                  | 118.322 1<br>120.980 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 72.777 170.01<br>72.495 172.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 52.699<br>1 57.834                                                                                                     | 56.978 38.799<br>52.649 31.884            | 39.647<br>38.594                                                                                                                                                       | 74<br>52                    | 34<br>72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | KMREH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 72<br>66                                                                                          | 8.874<br>8.645                                                                                                                               | 113.877 1<br>115.112 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 74.674 172.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6 52.356<br>5 57.971                                                                                                     | 57.973 31.816<br>52.444 68.310            | 31.884<br>31.816                                                                                                                                                       | 34-33                       | 66<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LDYF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35<br>46                                                                                          | 9.070<br>7.545                                                                                                                               | 121.047 1<br>119.368 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76.470 174.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 55.301<br>6 58.929                                                                                                     | 58.061 39.553<br>55.106 66.872            | 68.378<br>39.416                                                                                                                                                       | 66<br>35                    | 46<br>21-22-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KNWHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21<br>31                                                                                          | 7.741 7.179                                                                                                                                  | 122.768 1<br>121.631 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 71.587 173.11<br>73.342 171.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8 43.045<br>4 54.137                                                                                                     | 59.056 999.990<br>42.994 31.062           | 66.940<br>999.990 2                                                                                                                                                    | 46-22 3-21-63-22-40         | 40-63-31-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39<br>73                                                                                          | 8.553                                                                                                                                        | 120.292 1<br>113.725 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 71.930 173.34<br>72.737 171.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 60.093<br>7 57.423                                                                                                     | 53.907 67.351<br>59.992 38.320            | 31.131<br>67.488                                                                                                                                                       | 31<br>39                    | 73-3<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28                                                                                                | 8.686                                                                                                                                        | 121.784 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71.325 172.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 60.025<br>2 50 508                                                                                                     | 57.476 67.077<br>59.904 44.003            | 38.320                                                                                                                                                                 | 34-73-52                    | 3-73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 23<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | QHERVM<br>VFIY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27                                                                                                | 8.087                                                                                                                                        | 121.861 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73.524 172.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 53.246<br>3 55.985                                                                                                     | 50.425 27.297<br>53.439 34.075            | 44.003                                                                                                                                                                 | 3-5-78                      | 60-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | QHRMWKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55<br>58                                                                                          | 8.388                                                                                                                                        | 117.589 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73.605 171.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 51.055<br>4 54 821                                                                                                     | 56.276 28.871<br>63 122 61 052            | 33.938<br>29.351                                                                                                                                                       | 60                          | 74-43-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DYFL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12 22                                                                                             | 7.957                                                                                                                                        | 123.586 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73.968 172.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 53.794                                                                                                                 | 55.018 38.457<br>53.731 68.720            | 60.983<br>38.526                                                                                                                                                       | 58                          | 22-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NUVPCM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36                                                                                                | 8.426                                                                                                                                        | 121.006 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76.510 174.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 60.093                                                                                                                 | 57.242 32.090<br>58.412 35.787            | 68.789                                                                                                                                                                 | 21-22-66                    | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26                                                                                                | 8.037                                                                                                                                        | 121.943 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75.461 175.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 65 229                                                                                                                 | 53.643 28.392                             | 35.924                                                                                                                                                                 | 33                          | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                          |                                           |                                                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sults of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | segm                                                                                              | ent se                                                                                                                                       | earch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100 00                                                                                                                   | 0.0 m [0.0                                | - <b>-</b>                                                                                                                                                             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 130 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | correcu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on [U.y                                                                                           | lbbm                                                                                                                                         | QUICK AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sign toi: CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.3 CA                                                                                                                  | 10.3 CB 10.3                              | Trust u                                                                                                                                                                | ser assign                  | close                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| renalty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Resi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | due ran                                                                                           | ge                                                                                                                                           | Segment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s (ID numbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rs) User                                                                                                                 | assign vs resul                           | t: 100%                                                                                                                                                                | >80% <80%                   | • U%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| .124 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                   |                                                                                                                                              | 31-39-75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -74-52-34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -72-66-35<br>60-55                                                                                                       | -46-21                                    |                                                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| .112 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                   |                                                                                                                                              | 58-12-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                          |                                           |                                                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| .392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32-43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                   |                                                                                                                                              | 33-26-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -16-42-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -15-45-65                                                                                                                | -70-23-40                                 |                                                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| .104 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 46 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                   |                                                                                                                                              | 75 50 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 18 10 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E 40 C1                                                                                                                  |                                           |                                                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40-34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                   |                                                                                                                                              | 12-22-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -10-10-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3-43-01                                                                                                                 |                                           |                                                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| .869 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55-59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                   |                                                                                                                                              | 30-17-2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -19-41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -3-43-61                                                                                                                 |                                           |                                                                                                                                                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| .869 .608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48-54<br>55-59<br>62-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                   |                                                                                                                                              | 75-59-52<br>30-17-2-<br>24-56-76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -19-41<br>6-7-64-62-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -5-49-61<br>51-6-43-6                                                                                                    | 9-68-57-71-7                              | 9-13-1-2                                                                                                                                                               | 20-14-9-2                   | 9-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| .869 5<br>.608 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48-34<br>55-59<br>62-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                   |                                                                                                                                              | 75-59-54<br>30-17-2-<br>24-56-76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -19-41<br>6-7-64-62-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51-6-43-61                                                                                                               | 9-68-57-71-7                              | 9-13-1-2                                                                                                                                                               | 20-14-9-2                   | 9-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| .869 5<br>.608 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48-34<br>55-59<br>62-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                   |                                                                                                                                              | 75-59-5-<br>30-17-2-<br>24-56-76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -19-41<br>5-7-64-62-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 51-6-43-6                                                                                                                | 9-68-57-71-7                              | 9-13-1-;                                                                                                                                                               | 20-14-9-2                   | 9-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| .869 £                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40-34<br>55-59<br>62-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                   |                                                                                                                                              | 73-39-3-<br>30-17-2-<br>24-56-76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10-10-23<br>-19-41<br>5-7-64-62-:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51-6-43-6                                                                                                                | 9-68-57-71-7                              | 9-13-1-2                                                                                                                                                               | 20-14-9-2                   | 9-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| .669 (<br>.608 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48-34<br>55-59<br>62-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                   |                                                                                                                                              | 75-53-54<br>30-17-2-<br>24-56-76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10-10-23<br>-19-41<br>5-7-64-62-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51-6-43-6                                                                                                                | 9-68-57-71-7                              | 9-13-1-4                                                                                                                                                               | 20-14-9-2                   | 9-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| .669 6<br>.608 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | egmei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt de                                                                                             | tail re                                                                                                                                      | 24-56-76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19-10-10-23<br>-19-41<br>5-7-64-62-:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 51-6-43-6                                                                                                                | 9-68-57-71-7                              | 9-13-1-4                                                                                                                                                               | 20-14-9-2                   | 9-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| .869 (<br>.608 (<br>= Se<br>Penalty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | egmei<br>: 2.392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nt des<br>? Good                                                                                  | tail re                                                                                                                                      | 75-33-3-<br>30-17-2-<br>24-56-76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19-41<br>-7-64-62-:<br>13<br>Unassign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51-6-43-6                                                                                                                | 9-68-57-71-7                              | 9-13-1-2                                                                                                                                                               | 20-14-9-23                  | 9-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| enalty<br>Peak ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | egmei<br>: 2.392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nt des<br>? Good<br>Rtp                                                                           | <i>tail re</i><br>1<br>User                                                                                                                  | 73-39-34<br>30-17-2-<br>24-56-76<br>24-56-76<br>es:32-4<br>Assign<br>dCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19-41<br>-19-41<br>5-7-64-62-4<br>13<br>Unassign<br>dCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51-6-43-6                                                                                                                | 9-68-57-71-7<br>Predicted R               | 9-13-1-;<br>es(i-1)                                                                                                                                                    | 20-14-9-29<br>Predicte      | 9-4<br>close<br>ed Res(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | egmei<br>: 2.392<br>Rno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nt de<br>Good<br>Rtp<br>E<br>M                                                                    | tail ro<br>1<br>User<br>-<br>3 2                                                                                                             | (3-33-34<br>30-17-2-<br>24-56-7€<br>24-56-7€<br>24-56-7€<br>24-56-7€<br>24-56-7€<br>24-56-7€<br>24-56-7€<br>24-56-7€<br>24-56-7€<br>24-56-7€<br>24-56-7€                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13-41<br>13-41<br>5-7-64-62-5<br>13<br>Unassign<br>dCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51-6-43-6<br>dCB                                                                                                         | 9-68-57-71-7<br>Predicted Ra              | 9-13-1-4<br>es(i-1)                                                                                                                                                    | 20-14-9-23<br>Predicte      | 9-4<br>close<br>ad Res(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 269 €<br>2608 €  | egmei<br>: 2.392<br>Rno<br>-<br>32<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt de<br>2 Good<br>Rtp<br>E<br>N                                                                  | tail ro<br>I<br>User<br>32<br>32                                                                                                             | 13-33-34<br>30-17-2:<br>24-56-7€<br>24-56-7€<br>es:32-4<br>Assign<br>dCO<br>0.000<br>-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13-41<br>-7-64-62-1<br>13<br>Unassign<br>dCA<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dCB                                                                                                                      | 9-68-57-71-7<br>Predicted R<br>W2         | 9-13-1-2<br>es(i-1)<br>SQHRC                                                                                                                                           | 20-14-9-23<br>Predicte<br>2 | a<br>close<br>ed Res(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2608 2608 2600 2600 2600 2600 2600 2600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | egmei<br>: 2.392<br>Rno<br>32<br>33<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nt de<br>2 Good<br>Rtp<br>E<br>N<br>V                                                             | tail ro<br>1<br>User<br>32<br>33                                                                                                             | 13-33-34<br>30-17-2:<br>24-56-7€<br>24-56-7€<br>es:32-4<br>Assign<br>dCO<br>0.00<br>-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13-41<br>13-41<br>5-7-64-62-1<br>13<br>Unassign<br>dCA<br>0.00<br>0.01<br>-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dCB                                                                                                                      | 9-68-57-71-7<br>Predicted R<br>W2<br>ND   | 9-13-1-2<br>BS(i-1)<br>SQHRC<br>VFCML                                                                                                                                  | 20-14-9-23<br>Predicte<br>2 | 9-4<br>close<br>ed Res(i)<br>WDYFCML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2608 E<br>2010 E | egmei<br>: 2.392<br>Rno<br>-<br>32<br>33<br>34<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nt de<br>Good<br>Rtp<br>E<br>N<br>V<br>K                                                          | tail ro<br>1<br>User<br>32<br>33<br>34<br>25                                                                                                 | 13-33-34<br>30-17-22 24-56-7€ Assign dCO 0.00 -0.02 0.02 0.02 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13-41<br>13-41<br>5-7-64-62-5<br>13<br>Unassign<br>dCA<br>0.00<br>0.01<br>-0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dCB                                                                                                                      | 9-68-57-71-7<br>Predicted R<br>W1<br>ND:  | 9-13-1-:<br>es(i-1)<br>EQHRC<br>VFCML<br>V                                                                                                                             | 20-14-9-23<br>Predicte<br>2 | 9-4<br>close<br>ed Res(i)<br>VD YFCMI<br>WW                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2608 608 608 608 608 608 608 608 608 608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | egmei<br>: 2.392<br>Rno<br>-<br>32<br>33<br>34<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nt de<br>? Good<br>Rtp<br>E<br>N<br>V<br>K<br>A                                                   | tail ro<br>1<br>User<br>32<br>33<br>34<br>35                                                                                                 | 13-33-7-2<br>30-17-2<br>24-56-7€<br>24-56-7€<br>Assign<br>dCO<br>0.000<br>-0.02<br>0.002<br>0.002<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19-41<br>19-41<br>5-7-64-62-5<br>13<br>Unassign<br>dCA<br>0.00<br>0.01<br>-0.06<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dCB<br>0.00<br>-0.14<br>0.00<br>0.27                                                                                     | 9-68-57-71-7<br>Predicted R<br>W<br>ND    | 9-13-1-3<br>BS(i-1)<br>SQHRC<br>VFCML<br>V<br>MVK                                                                                                                      | 20-14-9-2<br>Predicte<br>2  | 9-4<br>close<br>bd Res(i)<br>NDYFCMI<br>WVK<br>AVK                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2603 26 26 26 26 26 26 26 26 26 26 26 26 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | egmen<br>: 2.392<br>Rno<br>-<br>32<br>33<br>34<br>35<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nt de<br>? Good<br>Rtp<br>E<br>N<br>V<br>K<br>A<br>K                                              | tail ro<br>1<br>User<br>32<br>33<br>34<br>35<br>36                                                                                           | 13-33-32<br>30-17-22<br>24-56-7€<br>24-56-7€<br>ess:32-4<br>Assign<br>dCO<br>0.000<br>-0.02<br>0.02<br>0.02<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13-41<br>13-41<br>5-7-64-62-5<br>13<br>Unassign<br>dCA<br>0.00<br>0.01<br>-0.06<br>0.04<br>-0.09<br>-0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dCB<br>0.00<br>-0.14<br>0.27<br>-0.07                                                                                    | 9-68-57-71-7<br>Predicted R<br>W2<br>MD : | 9-13-1-3<br><b>BS(i-1)</b><br>SQHRC<br>VFCML<br>V<br>MVK<br>A                                                                                                          | 20-14-9-23                  | a<br>close<br>d Res(i)<br>VD XF CMLL<br>V<br>MVR<br>A<br>MVR                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2608 50<br>2008 50<br>200                                                         | egmen<br>: 2.392<br>Rno<br>-<br>32<br>33<br>34<br>35<br>36<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nt de<br>? Good<br>Rtp<br>E<br>N<br>V<br>K<br>A<br>K<br>I                                         | tail ro<br>I<br>User<br>32<br>33<br>34<br>35<br>36<br>37                                                                                     | 13-33-34<br>30-17-22 24-56-7€ 4-56-7€ 6.000 0.000 0.002 0.002 0.000 0.000 0.000 0.002 0.000 0.000 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13-41<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dCB<br>0.00<br>-0.14<br>0.27<br>-0.07<br>0.14                                                                            | 9-68-57-71-7<br>Predicted R<br>W1<br>ND:  | 9-13-1-2<br>es(i-1)<br>sqhrc<br>VFCML<br>V<br>MVK<br>A<br>MVK                                                                                                          | 20-14-9-23<br>Predicte<br>2 | a<br>close<br>ed Res(i)<br>VD XF CML<br>V<br>WVR<br>A<br>MVR<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2608 500 500 500 500 500 500 500 500 500 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | egmei<br>62-82<br>2 2.392<br>2 Rno<br>-<br>32<br>33<br>34<br>35<br>36<br>37<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nt de<br>? Good<br>Rtp<br>E<br>N<br>V<br>K<br>A<br>K<br>I<br>Q                                    | tail ro<br>I<br>User<br>32<br>33<br>34<br>35<br>36<br>37<br>38                                                                               | 13-33-34<br>30-17-22<br>24-56-7€<br>24-56-7€<br>Assign<br>dCO<br>0.000<br>-0.02<br>0.002<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19-41<br>5-7-64-62-5<br>13<br>Unassign<br>dCA<br>0.00<br>0.01<br>-0.06<br>0.04<br>-0.09<br>-0.09<br>-0.09<br>-0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dCB<br>0.00<br>-0.14<br>0.00<br>0.27<br>-0.07<br>0.14<br>0.14                                                            | 9-68-57-71-7<br>Predicted R<br>W2<br>ND:  | 9-13-1-3<br>es(i-1)<br>sqhrc<br>y<br>rfcmL<br>V<br>MVK<br>A<br>MVK<br>I                                                                                                | 20-14-9-23<br>Predicte<br>2 | 9-4<br>close<br>ed Res(i)<br>NDYFCMI<br>WWW<br>A<br>WVK<br>A<br>WVK<br>A<br>WVK<br>A<br>WVK<br>A<br>WVK<br>A<br>WVK<br>A<br>WVK<br>A                                                                                                                                                                                                                                                                                                                                                                                 |
| 2608 construction of the second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | egme<br>52-82<br>2.392<br>Rno<br>-<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nt de<br>2 Good<br>Rtp<br>E<br>N<br>V<br>K<br>A<br>K<br>I<br>Q<br>D                               | tail ro<br>I<br>User<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39                                                                         | 13-33-2-33<br>30-17-2-<br>24-56-7€<br>24-56-7€<br>Assign<br>dCO<br>0.00<br>-0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19-41<br>19-41<br>5-7-64-62-5<br>19-41<br>5-7-64-62-5<br>10-23<br>42<br>0.00<br>0.01<br>-0.06<br>0.04<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dCB<br>0.00<br>-0.14<br>0.00<br>0.27<br>-0.07<br>0.14<br>-0.14                                                           | 9-68-57-71-7<br>Predicted R<br>W2<br>ND.  | 9-13-1-3<br>es(i-1)<br>SQHRC<br>VFCML<br>V<br>MVK<br>A<br>MVK<br>A<br>WVK<br>X<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V                        | 20-14-9-23<br>Predicte<br>2 | a<br>close<br>d Res(i)<br>NDYFCMI<br>WVR<br>A<br>WVR<br>I<br>QHEWC<br>DLYF1                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2009 5000 5000 5000 5000 5000 5000 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | egmei<br>52-82<br>2.392<br>2.392<br>2.392<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nt de<br>2 Good<br>Rtp<br>E<br>N<br>V<br>K<br>A<br>K<br>I<br>Q<br>D<br>K                          | tail ro<br>1<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>37<br>38<br>39<br>40                                                               | 13-33-3-33<br>30-17-2-<br>24-56-7€<br>24-56-7€<br>Assign<br>dCO<br>0.00<br>-0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19-41<br>19-41<br>5-7-64-62-5<br>13<br>Unassign<br>dCA<br>0.00<br>0.01<br>-0.06<br>0.04<br>-0.09<br>-0.18<br>-0.18<br>-0.15<br>0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dCB<br>0.00<br>-0.14<br>0.00<br>0.27<br>-0.07<br>0.14<br>0.14<br>0.14                                                    | 9-68-57-71-7<br>Predicted R<br>WD         | 9-13-1-2<br>es(i-1)<br>EQHRC<br>VFCML<br>V<br>MVK<br>A<br>MVK<br>A<br>MVK<br>NQHCE<br>DLYFI                                                                            | 20-14-9-23<br>Predicte<br>2 | a<br>close<br>ed Res(i)<br>NDYFCML<br>WWR<br>A<br>WVR<br>A<br>WVR<br>A<br>WVR<br>A<br>WVR<br>A<br>WVR<br>A<br>WVR<br>A<br>VR<br>VR<br>C<br>B<br>LYFT                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>See 1</li> <li>See 1</li> <li>See 1</li> <li>See 1</li> <li>See 1</li> <li>See 2</li> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | egimei<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52<br>52<br>52-82<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52                                                                                                                  | nt de<br>2 Good<br>Rtp<br>E<br>N<br>V<br>K<br>A<br>K<br>I<br>Q<br>D<br>K<br>E                     | tail ro<br>1<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41                                                                     | 13-33-32<br>30-17-22<br>24-56-7€ 24-56-7€ dCO 0.000 -0.022 0.000 -0.022 0.000 -0.022 0.000 -0.02 0.03 0.000 -0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13-41<br>13-41<br>5-7-64-62-5<br>13<br>Unassign<br>dCA<br>0.00<br>0.01<br>-0.06<br>0.04<br>-0.09<br>-0.09<br>-0.09<br>-0.15<br>0.22<br>-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dCB<br>0.00<br>-0.14<br>0.00<br>0.27<br>-0.07<br>0.14<br>0.14<br>-0.14<br>0.14<br>-0.07                                  | 9-68-57-71-7<br>Predicted R<br>W2<br>ND:  | 9-13-1-2<br>BS(i-1)<br>SQHRC<br>VFCML<br>V<br>MVK<br>A<br>MVK<br>A<br>MVK<br>I<br>VQHCE<br>DLYFI<br>XVMCH                                                              | 20-14-9-23<br>Predicte<br>2 | a<br>close<br>ed Res(i)<br>NDYFCMI<br>WDYFCMI<br>WWR<br>A<br>WVR<br>Z<br>ULYFI<br>KVMCH<br>MKHREW                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ■ Score 2<br>Score 4<br>Score 4                                                              | egme<br>52-82<br>52-82<br>233<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nt de<br>2 Good<br>Rtp<br>E<br>N<br>V<br>K<br>A<br>K<br>I<br>Q<br>D<br>K<br>E<br>G                | tail ro<br>User<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42                                                            | 13-33-34<br>30-17-22 24-56-76 Assign dCO 0.000 -0.02 0.000 -0.02 0.000 -0.02 0.000 -0.02 0.001 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19-41<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dCB<br>0.00<br>-0.14<br>0.00<br>-0.14<br>0.00<br>0.27<br>-0.07<br>0.14<br>0.14<br>-0.14<br>0.14<br>-0.14                 | 9-68-57-71-7<br>Predicted R<br>W2<br>ND:  | 9-13-1-2<br>es(i-1)<br>SQHRC<br>YFCML<br>V<br>MVK<br>A<br>MVK<br>I<br>WQHCE<br>DLYFI<br>KVMCH<br>KHREW                                                                 | 20-14-9-23<br>Predicte<br>2 | a-4<br>close<br>ed Res(i)<br>NDYFCML<br>WVR<br>A<br>WVR<br>A<br>WVR<br>I<br>QHEWC<br>DLYF1<br>KVMCH<br>KKHREW                                                                                                                                                                                                                                                                                                                                                                                                        |
| ■ Score 1<br>Score 1                                                              | egmei<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52<br>52<br>52-82<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52          | nt de<br>2 Good<br>Rtp<br>E<br>N<br>V<br>K<br>A<br>K<br>I<br>Q<br>D<br>K<br>E<br>G<br>I           | tail ro<br>User<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43                                                      | 13-39-2-30         30-17-2-2         24-56-76         Assign         dCO         0.002         0.02         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.002         0.003         0.001         -0.01         -0.02         0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19-41<br>19-41<br>-7-64-62-:<br>19-41<br>-7-64-62-:<br>42<br>0.00<br>0.01<br>-0.06<br>0.04<br>-0.09<br>-0.09<br>-0.09<br>-0.18<br>-0.15<br>0.22<br>-0.02<br>-0.02<br>-0.04<br>-0.04<br>-0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dCB<br>0.00<br>-0.14<br>0.00<br>0.27<br>-0.07<br>0.14<br>0.14<br>-0.14<br>0.14<br>-0.14<br>0.14<br>-0.14<br>0.07         | 9-68-57-71-7<br>Predicted R<br>W1<br>ND:  | 9-13-1-2<br>es(i-1)<br>SQHRC<br>VFCML<br>V<br>MVK<br>A<br>MVK<br>A<br>MVK<br>I<br>VQHCE<br>DLYFI<br>KVMCH<br>KHREW<br>G                                                | 20-14-9-23<br>Predicte<br>2 | a<br>close<br>ed Res(i)<br>WDYFCML<br>WDYFCML<br>WWW<br>A<br>WVW<br>A<br>WVW<br>L<br>ULYFI<br>KVMCH<br>MKHREW<br>G<br>DLYFI                                                                                                                                                                                                                                                                                                                                                                                          |
| 500 500 500 500 500 500 500 500 500 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | egmen<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52<br>52-82<br>52<br>52-82<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52 | nt de<br>2 Good<br>Rtp<br>E<br>N<br>V<br>K<br>A<br>K<br>I<br>Q<br>D<br>K<br>K<br>E<br>G<br>I      | tail ra<br>1<br>User<br>32<br>33<br>34<br>35<br>36<br>35<br>37<br>38<br>39<br>40<br>41<br>42<br>43                                           | 13-33-17-2:<br>30-17-2:<br>24-56-7€ 24-56-7€ Assign dCO 0.00 0.02 0.02 0.02 0.03 0.00 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19-41<br>-19-41<br>-7-64-62-:<br>19-41<br>-7-64-62-:<br>10-23<br>0.00<br>0.01<br>-0.06<br>0.04<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.15<br>0.22<br>-0.02<br>-0.04<br>-0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dCB<br>0.00<br>-0.14<br>0.00<br>0.27<br>-0.07<br>0.14<br>0.14<br>-0.14<br>0.14<br>0.07<br>0.14<br>0.00                   | 9-68-57-71-7<br>Predicted Ri<br>WD<br>ND  | 9-13-1-3<br>PS(i-1)<br>SQHRC<br>V<br>MVK<br>A<br>WVK<br>A<br>WVK<br>A<br>V<br>V<br>V<br>V<br>V<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K        | 20-14-9-23<br>Predicte<br>2 | a<br>close<br>ed Res(i)<br>NDYFCML<br>WVK<br>A<br>WVK<br>A<br>WVK<br>A<br>WVK<br>A<br>WVK<br>A<br>WVK<br>B<br>ULYFI                                                                                                                                                                                                                                                                                                                                                                                                  |
| 26608 608 608 608 608 608 608 608 608 608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | egmen<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52<br>52<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt de<br>2 Good<br>Rtp<br>E<br>N<br>V<br>V<br>K<br>A<br>K<br>I<br>Q<br>D<br>K<br>K<br>E<br>G<br>I | tail re<br>1<br>User<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43                                                 | 13-33-7-2:<br>30-17-2:<br>24-56-7€<br>24-56-7€<br>4CO<br>0.000<br>-0.02<br>0.000<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.01<br>-0.01<br>-0.02<br>-0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19-41<br>19-41<br>5-7-64-62-5<br>13<br>Unassign<br>dCA<br>0.00<br>0.01<br>-0.06<br>0.04<br>-0.09<br>-0.09<br>-0.09<br>-0.18<br>-0.15<br>0.22<br>-0.02<br>-0.04<br>-0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dCB<br>0.00<br>-0.14<br>0.07<br>-0.07<br>0.14<br>0.14<br>-0.14<br>-0.14<br>0.14<br>-0.14<br>0.14<br>-0.14<br>0.14        | 9-68-57-71-7<br>Predicted R<br>W2<br>2/D  | 9-13-1-3<br>es(i-1)<br>SQHRC<br>VFCML<br>V<br>MVK<br>A<br>NVK<br>A<br>V<br>V<br>V<br>V<br>V<br>K<br>V<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K | 20-14-9-23                  | a<br>close<br>ed Res(i)<br>WDYFCMI<br>WDYFCMI<br>WWK<br>A<br>WVK<br>A<br>WVK<br>A<br>WVK<br>A<br>WVK<br>B<br>LYF1                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2669 5000 1000 1000 1000 1000 1000 1000 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | egme<br>52-82<br>52-82<br>62-82<br>62-82<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nt de<br>2 Gool<br>Rtp<br>E<br>N<br>V<br>K<br>A<br>K<br>I<br>Q<br>D<br>K<br>K<br>E<br>G<br>I      | tail ro<br>User<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43                                                      | 13-33-34<br>30-17-22 24-56-76 Assign dCO 0.000 -0.02 0.000 -0.02 0.000 -0.02 0.000 -0.02 0.000 -0.02 0.000 -0.02 0.000 -0.02 -0.01 -0.01 -0.02 -0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19-41<br>5-7-64-62-5<br>Unassign<br>dCA<br>0.00<br>0.01<br>-0.06<br>0.04<br>-0.09<br>-0.09<br>-0.15<br>0.22<br>-0.02<br>-0.04<br>-0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dCB<br>0.00<br>-0.14<br>0.02<br>-0.14<br>0.14<br>-0.07<br>-0.14<br>0.14<br>-0.14<br>0.00                                 | 9-68-57-71-7<br>Predicted R<br>W2<br>ND   | 9-13-1-3<br>es(i-1)<br>sqhrc<br>yfcml<br>wyhce<br>yfcml<br>wyhce<br>blyfi<br>xvmch<br>khrew<br>g                                                                       | 20-14-9-23<br>Predicte<br>2 | a<br>close<br>ed Res(i)<br>WDYFCML<br>WWR<br>A<br>WVR<br>A<br>WVR<br>I<br>QHEWC<br>DLYFI<br>KVMCH<br>MKHREW<br>G<br>DLYFI                                                                                                                                                                                                                                                                                                                                                                                            |
| 26508 €<br>2608 €<br>2608 €<br>2608 €<br>233<br>26<br>50<br>16<br>42<br>37<br>15<br>45<br>65<br>70<br>23<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | egme<br>52-82<br>52-82<br>233<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nt de<br>2 Good<br>Rtp<br>E<br>N<br>V<br>K<br>A<br>K<br>L<br>Q<br>D<br>K<br>E<br>G<br>L           | tail ra<br>User<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43                                                      | 13-33-3-33<br>30-17-2-<br>24-56-76 24-56-76 Assign dCO 0.00 -0.02 0.02 0.02 0.02 0.02 0.00 -0.02 0.03 0.00 -0.01 -0.01 -0.02 -0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19-41<br>19-41<br>-7-64-62-:<br>19-41<br>-7-64-62-:<br>42<br>0.000<br>0.011<br>-0.06<br>0.021<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.15<br>0.22<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dCB<br>0.00<br>-0.14<br>0.00<br>-0.14<br>0.00<br>0.27<br>-0.07<br>0.14<br>0.14<br>-0.14<br>0.14<br>-0.07<br>0.14<br>0.00 | 9-68-57-71-7<br>Predicted R<br>W1<br>ND:  | 9-13-1-3<br>es(i-1)<br>SQHRC<br>YFCML<br>V<br>MVK<br>A<br>MVK<br>I<br>WQHCE<br>DLYFI<br>KVMCH<br>KHREW<br>G                                                            | 20-14-9-23                  | B-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| .608 €<br>.608 €<br>Penalty<br>Peak ID<br><br>326<br>50<br>16<br>42<br>37<br>15<br>45<br>65<br>70<br>23<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | egmei<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nt de<br>2 Good<br>Rtp<br>E<br>N<br>V<br>K<br>A<br>K<br>I<br>Q<br>D<br>K<br>E<br>G<br>I           | tail ro<br>1<br>User<br>32<br>33<br>34<br>35<br>36<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>40<br>41<br>42<br>43 | 13-33-17-2:<br>30-17-2:<br>24-56-76 24-56-76 Assign dCO 0.00 0.02 0.02 0.02 0.02 0.02 0.03 0.001 -0.01 -0.02 -0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19-41<br>19-41<br>-7-64-62-:<br>19-41<br>-7-64-62-:<br>42<br>0.00<br>0.01<br>-0.06<br>0.04<br>-0.09<br>-0.09<br>-0.09<br>-0.18<br>-0.15<br>0.22<br>-0.02<br>-0.02<br>-0.04<br>-0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dCB<br>0.00<br>-0.14<br>0.00<br>0.27<br>-0.07<br>0.14<br>0.14<br>-0.14<br>0.14<br>-0.14<br>0.14<br>0.00                  | 9-68-57-71-7<br>Predicted R<br>W1<br>ND:  | 9-13-1-3<br>es(i-1)<br>SQHRC<br>VFCML<br>V<br>MVK<br>A<br>MVK<br>A<br>MVK<br>I<br>VQHCE<br>DLYFI<br>XVMCH<br>KHREW<br>G                                                | 20-14-9-23                  | 9-4<br>close<br>bd Res(i)<br>NDYFCML<br>WWK<br>A<br>WVK<br>A<br>WVK<br>B<br>ULYFI<br>KVMCH<br>MKHREW<br>G<br>DLYFI                                                                                                                                                                                                                                                                                                                                                                                                   |
| .608<br>.608<br>Penalty<br>Peak ID<br><br>32<br>26<br>50<br>16<br>42<br>37<br>15<br>65<br>70<br>23<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | egmen<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52<br>52<br>52-82<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52 | nt de<br>2 Good<br>Rtp<br>E<br>N<br>V<br>K<br>A<br>K<br>I<br>Q<br>D<br>K<br>E<br>G<br>I           | tail re<br>1<br>User<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43                                                 | 13-33-2-33<br>30-17-2-33<br>24-56-76<br>24-56-76<br>Assign<br>dCO 0.000 0.002 0.002 0.002 0.002 0.002 0.003 0.001 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19-41<br>19-41<br>-7-64-62-:<br>19-41<br>-7-64-62-:<br>10-23<br>0.00<br>0.01<br>-0.06<br>0.04<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.02<br>-0.02<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.02<br>-0.02<br>-0.09<br>-0.09<br>-0.09<br>-0.02<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.02<br>-0.09<br>-0.09<br>-0.15<br>-0.02<br>-0.02<br>-0.02<br>-0.09<br>-0.15<br>-0.02<br>-0.02<br>-0.09<br>-0.09<br>-0.15<br>-0.02<br>-0.02<br>-0.02<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.09<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.09<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.09<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0.02<br>-0 | dCB<br>0.00<br>-0.14<br>0.00<br>0.27<br>-0.07<br>0.14<br>0.14<br>-0.14<br>0.14<br>0.14<br>0.00                           | 9-68-57-71-7<br>Predicted Ri<br>WJ<br>ND: | 9-13-1-3<br>PS(i-1)<br>SQHRC<br>V<br>MVK<br>A<br>WVK<br>A<br>WVK<br>A<br>V<br>V<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K                       | 20-14-9-23                  | 9-4<br>close<br>ed Res(i)<br>NDYFCML<br>WDYFCML<br>WWX<br>A<br>WVX<br>A<br>WVX<br>A<br>WVX<br>A<br>WVX<br>A<br>WVX<br>A<br>WVX<br>A<br>WVX<br>A<br>WVX<br>A<br>WVX<br>A<br>WVX<br>A<br>MVX<br>A<br>WVX<br>A<br>UYFCML<br>U<br>V<br>D<br>YFCML<br>U<br>V<br>D<br>YFCML<br>V<br>V<br>D<br>YFCML<br>V<br>V<br>D<br>YFCML<br>V<br>V<br>D<br>YFCML<br>V<br>V<br>D<br>YFCML<br>V<br>V<br>D<br>YFCML<br>V<br>V<br>D<br>YFCML<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V |
| .605         5           .608         .608           Penalty           Peak ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | egme:<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52<br>52<br>52-82<br>52<br>52<br>52-82<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52                                                                                                                                                                                                                      | nt de<br>2 Good<br>Rtp<br>E<br>N<br>V<br>V<br>K<br>A<br>K<br>I<br>Q<br>D<br>K<br>K<br>E<br>G<br>I | tail re<br>1<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43                                                         | 13-33-3-23<br>30-17-2-<br>24-56-76<br>24-56-76<br>4CO<br>0.000<br>-0.02<br>0.000<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>0.000<br>-0.02<br>-0.02<br>-0.02<br>-0.000<br>-0.02<br>-0.02<br>-0.000<br>-0.02<br>-0.000<br>-0.000<br>-0.02<br>-0.000<br>-0.000<br>-0.02<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.000<br>-0.0000<br>-0.000<br>-0.000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.0000<br>-0.00000<br>-0.0000<br>-0.00000<br>-0.0000<br>-0.0000<br>-0.00000<br>-0.0000<br>-0.0000<br>-0.00000<br>-0.0000<br>-0.0000<br>-0.00000<br>-0.0000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.00000<br>-0.000000<br>-0.00000000 | 19-41<br>5-7-64-62-<br>13<br>Unassign<br>dCA<br>0.00<br>0.01<br>-0.06<br>0.04<br>-0.09<br>-0.18<br>-0.15<br>0.22<br>-0.02<br>-0.04<br>-0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dCB<br>0.00<br>-0.14<br>0.00<br>0.27<br>-0.07<br>0.14<br>0.14<br>-0.14<br>-0.14<br>0.14<br>-0.14<br>0.14                 | 9-68-57-71-7<br>Predicted R<br>W2<br>ND   | 9-13-1-3<br>es(i-1)<br>EQHRC<br>VFCML<br>V<br>MVK<br>A<br>MVK<br>I<br>WQHCE<br>DLYFI<br>CLYFI<br>G                                                                     | Predicte                    | a<br>close<br>ed Res(i)<br>WDYFCML<br>W<br>MVR<br>A<br>WVR<br>I<br>QHEWC<br>DLYFI<br>KVMCH<br>MKHREW<br>G<br>DLYFI                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>bes</b><br><b>608</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | egme<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52-82<br>52<br>52<br>52-82<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52                    | nt de<br>Good<br>Rtp<br>E<br>N<br>V<br>K<br>A<br>K<br>I<br>Q<br>D<br>K<br>E<br>G<br>I<br>I        | tail ro<br>User<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43                                                      | 13-33-34<br>30-17-22 24-56-76 Assign dCO 0.000 -0.02 0.000 -0.02 0.000 -0.02 0.000 -0.02 0.000 -0.02 -0.03 0.001 -0.01 -0.01 -0.01 -0.02 -0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19-41<br>-19-41<br>-7-64-62<br>13<br>Unassign<br>dCA<br>0.00<br>0.01<br>-0.06<br>0.04<br>-0.09<br>-0.09<br>-0.09<br>-0.15<br>0.22<br>-0.02<br>-0.04<br>-0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dCB<br>0.00<br>-0.14<br>0.00<br>-0.14<br>0.00<br>0.27<br>-0.07<br>0.14<br>0.14<br>-0.14<br>0.14<br>0.00                  | 9-68-57-71-7                              | 9-13-1-3<br>es(i-1)<br>SQHRC<br>YFCML<br>WVK<br>A<br>MVK<br>I<br>WQHCE<br>DIYFI<br>KVMCH<br>KHREW<br>G                                                                 | Predicte                    | a<br>close<br>ed Res(i)<br>NDYFCML<br>WWW<br>A<br>MVR<br>2<br>QHEWC<br>DLYF1<br>KVMCH<br>MRHREW<br>G<br>DLYF1                                                                                                                                                                                                                                                                                                                                                                                                        |

# Fig. 4 continued

 $(\chi^1, \chi^2)$  using the side-chain rotamer library established by Lovell and colleagues (Lovell et al. 2000) (Fig. 8B).

Application example of KUJIRA for a small protein, human ubiquitin

Uniformly  ${}^{13}C/{}^{15}$ N-labeled human ubiquitin (~0.8 mM), expressed and purified using the methods established by Kigawa and coworkers (Kigawa et al. 1999, 2004), was

used for the NMR measurements in  ${}^{1}\text{H}_{2}\text{O}/{}^{2}\text{H}_{2}\text{O}$  (9:1), containing 20 mM sodium phosphate buffer (pH 6.0), 100 mM NaCl, 1 mM 1,4-DL-dithiothreitol- $d_{10}$  and 0.02% NaN<sub>3</sub>. This human ubiquitin construct comprises 83 amino acid residues, with 76 residues of the natural sequence and 7 N-terminal artificial residues, GSSGSSG.

All of the 2D and 3D NMR spectra were measured at 25°C on Bruker AVANCE600 and AVANCE800 spectrometers. The acquired spectral data were processed with

Fig. 5 The flow chart of the automated sequence-specific main-chain assignment, using the program "QuickAssign". The first step of the program job is loading a text file describing the basic data for the assignment, including the chemical shifts of <sup>1</sup>H, <sup>15</sup>N, sequential and intra-residual <sup>13</sup>C<sub> $\alpha$ </sub>, <sup>13</sup>C<sub> $\beta$ </sub>, and <sup>13</sup>C' signals, for the user-defined peak IDs. The chart on the left describes the flow chart of each sequential assignment step



the program NMRPipe (Delaglio et al. 1995). The 3D triexperiments, HNCO, ple resonance HN(CA)CO, HN(CO)CA, HNCA, CBCA(CO)NH, and HNCACB, were used for the chemical shifts of the sequence-specific mainchain and  ${}^{13}C_{\beta}$  signal assignments, while HBHA(CBC-ACO)NH, C(CCO)NH, and HCCH-TOCSY were used for the chemical shift assignments of the side-chain signals. <sup>15</sup>N-edited NOESY and <sup>13</sup>C-edited NOESY (covering both aliphatic and aromatic region of <sup>13</sup>C dimension) experiments with a mixing time of 80 ms were used for the mainchain and side-chain assignments, as well as for obtaining the NOE peaks.

Combined automated NOE cross-peak assignment by the CANDID algorithm (Herrmann et al. 2002) and structure calculation by torsion angle dynamics (Güntert et al. 1997) were performed using the software package CYANA 1.0.7 (Güntert 2003). Peak lists for the <sup>15</sup>N-edited NOESY and <sup>13</sup>C-edited NOESY spectra were generated by automated and manual peak picking with NMRView. The input data files also included a chemical shift table for the assigned signals, which was managed by KUJIRA. The backbone and  $C^{\beta}$  chemical shift values were analyzed with the program TALOS (Cornilescu et al. 1999) to generate dihedral angle constraints with lower and upper limits of  $\pm 30$  degrees around the most probable values of the  $\phi$  and  $\psi$  backbone dihedral angles. No other structural constraints were applied in the CYANA calculations. Twenty IBM Power4 processors (1.5 GHz) of an IBM p655 server were employed for the CYANA calculations. An accurate solution structure of human ubiquitin was previously determined by Cornilescu and colleagues (Cornilescu et al. 1998), on the basis of the virtually complete chemical shift assignments and a large number of structural constraints, including 2,727 NOE, 98 dihedral angle, 1,307 residual dipolar coupling and 27 hydrogen bond related constraints.

The coordinate data (PDB Accession code 1D3Z) and the chemical shift data (BMRB Accession Number 6457) were used as a reference for comparison with the structures and chemical shifts determined in this study.

# **Results and discussion**

As of this year, our research group has determined more than 1,200 protein structures by NMR techniques, as a part of the RIKEN Structural Genomics/Proteomics Initiative (RSGI) for the "Protein 3000" Project in Japan. At present, more than 800 of these structures can be found in the Protein Data Bank, which were solved by means of a protocol similar to the one employing KUJIRA and CYANA as described in the following. The conventional strategy for NMR protein structure determination follows the paradigm that an accurately determined structure is the consequence of accurately assigned NOEs, which, in turn, are derived from accurately determined chemical shifts. Ideally, each stage of the structure analysis, as mentioned in the introduction, should be completed with high accuracy and completeness, before starting the next one. Otherwise, it would be difficult to obtain a correct structure. However, the exacting requirements of the previous stage can delay the start of the subsequent stage, thus slowing down the whole process. This constitutes a weakness of the conventional strategy, if it is applied to high-throughput NMR analysis. Another weakness could arise if the conventional strategy is not facilitated with an integrated platform. Since nowadays, structure analyses by NMR require a number of software packages, the NMR scientist has to be experienced with each of them. The data exchange, such as importing and exporting from one software format to another, is more complicated as the number



Fig. 6 (A) Pop-up graphical interface showing the list of sequence segments that are expected from the amino acid sequence of the protein. The user can select the type of signals by clicking the checkboxes on the top of the interface. By double-clicking one of the segments, the arrayed 2D-spectrum strips appear (B), showing the sequential connectivity of the assigned peak IDs. Each pair of strips corresponds to a peak ID, in which the sequential strip is placed on the left, while the intra-residual strip is on the right. The identified carbon signals are indicated by the blue boxes labeled with the assigned residue number and amino acid type in one-letter code. (C) Pop-up graphical interface displaying the results of the function "CheckAssign". This function examines the sequential connectivities of the assigned peak IDs, and gives a warning message for chemical shift differences of 0.3-0.5 ppm and an error message for those

>0.5 ppm. The warning messages with the label "- - -" indicate that the chemical shift is not defined for making the sequential connectivity. The lower list-box displays the warning messages if a redundancy is found in the assigned residue number or the defined peak ID number, or if the amino acid type of the assigned peak ID or the combination of the identified <sup>13</sup>C<sub>a</sub> and <sup>13</sup>C<sub>b</sub> chemical shifts does not match with the actual protein sequence. (**D**) By double-clicking one of the warning/error messages on the upper list-box, a pop-up interface appears to display the arrayed 2D spectrum strips. The problematic sequential connectivity is highlighted by the magenta coloring of the two corresponding strips. The user is allowed to correct and save the identified peak position by directly clicking on the spectrum strip

Table 1 The results of the four steps of automated sequential assignment performed by the external C program "QuickAssign"<sup>a,b</sup>

| Penalty                 | Residue                   | Assigned segments                                                                                                                                                |
|-------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| First step              |                           | Tol <sup>c</sup> : 0.3, 0.3, 0.3, Amb <sup>d</sup> : 0, Maxp <sup>e</sup> : 2.4, Minc <sup>f</sup> : 2, Minl <sup>g</sup> : 8                                    |
| 1.124                   | 7–17                      | 11-44-32-74-52-34-72-66-35-46-21                                                                                                                                 |
| 2.392                   | 32–43                     | 33-26-50-16-42-37-15-45-65-70-23-40                                                                                                                              |
| 2.104                   | 46–54                     | 75-59-54-18-10-25-5-49-61                                                                                                                                        |
| 1.608                   | 62-82                     | 24-56-76-7-64-62-51-6-43-69-68-57-71-79-13-1-20-14-9-29-4                                                                                                        |
| Completeness of assignm | hent <sup>h</sup> : 67.1% |                                                                                                                                                                  |
| Second step             |                           | Tol <sup>c</sup> : 0.3, 0.3, 0.3, Amb <sup>d</sup> : 1, Maxp <sup>e</sup> : 4.0, Minc <sup>f</sup> : 2, Minl <sup>g</sup> : 8                                    |
| 1.124                   | 7–17                      | 11-44-32-74-52-34-72-66-35-46-21                                                                                                                                 |
| 2.246                   | 18–25                     | 31-39-73-28-3-27-60-55                                                                                                                                           |
| 2.392                   | 32–43                     | 33-26-50-16-42-37-15-45-65-70-23-40                                                                                                                              |
| 2.104                   | 46–54                     | 75-59-54-18-10-25-5-49-61                                                                                                                                        |
| 1.608                   | 62-82                     | 24-56-76-7-64-62-51-6-43-69-68-57-71-79-13-1-20-14-9-29-4                                                                                                        |
| Completeness of assignm | hent <sup>h</sup> : 77.2% |                                                                                                                                                                  |
| Third step              |                           | Tol <sup>c</sup> : 0.3, 0.3, 0.3, Amb <sup>d</sup> : 2, Maxp <sup>e</sup> : 4.0, Minc <sup>f</sup> : 2, Minl <sup>g</sup> : 5                                    |
| 1.124                   | 7–17                      | 11-44-32-74-52-34-72-66-35-46-21                                                                                                                                 |
| 2.246                   | 18–25                     | 31-39-73-28-3-27-60-55                                                                                                                                           |
| 0.869                   | 55–59                     | 30-17-2-19-41                                                                                                                                                    |
| 2.392                   | 32–43                     | 33-26-50-16-42-37-15-45-65-70-23-40                                                                                                                              |
| 2.104                   | 46–54                     | 75-59-54-18-10-25-5-49-61                                                                                                                                        |
| 1.608                   | 62–82                     | 24-56-76-7-64-62-51-6-43-69-68-57-71-79-13-1-20-14-9-29-4                                                                                                        |
| Completeness of assignm | hent <sup>h</sup> : 83.5% |                                                                                                                                                                  |
| Fourth step             |                           | <i>Tol</i> <sup>c</sup> : 0.3, 0.3, 0.3, <i>Amb</i> <sup>d</sup> : -, <i>Maxp</i> <sup>e</sup> : 6.0, <i>Minc</i> <sup>f</sup> : 2, <i>Minl</i> <sup>g</sup> : 3 |
| 1.124                   | 7–17                      | 11-44-32-74-52-34-72-66-35-46-21                                                                                                                                 |
| 2.246                   | 18–25                     | 31-39-73-28-3-27-60-55                                                                                                                                           |
| 2.112                   | 27–30                     | 58-12-22-36                                                                                                                                                      |
| 0.869                   | 55–59                     | 30-17-2-19-41                                                                                                                                                    |
| 2.392                   | 32–43                     | 33-26-50-16-42-37-15-45-65-70-23-40                                                                                                                              |
| 2.104                   | 46–54                     | 75-59-54-18-10-25-5-49-61                                                                                                                                        |
| 1.608                   | 62–82                     | 24-56-76-7-64-62-51-6-43-69-68-57-71-79-13-1-20-14-9-29-4                                                                                                        |
| Completeness of assignm | hent <sup>h</sup> : 88.6% |                                                                                                                                                                  |

<sup>a</sup> The experiment was carried out for the tutorial sample, as described in the text

<sup>b</sup> The basic main-chain assignment information, including peak IDs, the chemical shifts of  ${}^{1}H_{N}$ ,  ${}^{15}N\alpha$ , sequential and intra-residual  ${}^{13}C'$ ,  ${}^{13}C\alpha$  and  ${}^{13}C\beta$ , was prepared manually

<sup>c</sup> Tolerance values (ppm) for identifying the sequential connectivity of the peak ID, based on <sup>13</sup>C signals respectively corresponding to <sup>13</sup>C', <sup>13</sup>C $\alpha$  and <sup>13</sup>C $\beta$ 

<sup>d</sup> Maximal ambiguity of the sequential connectivity

<sup>e</sup> Maximal penalty value to assign the mapped segment

<sup>f</sup> Minimal number of signals used for identifying the sequential connectivity

<sup>g</sup> Minimal length of segment to be judged

<sup>h</sup> The total number of residues to be assigned is 78

of required software programs increases. As mentioned above, the CCPN and SPINS data models are a promising solution to address these problems, by developing a program suite to integrate many software programs, NMR data and related information. The remarkable feature of the CCPN data model is not only the reduction in the tedious manipulation of NMR data but also their originally created API, with which scientists within the community can easily develop software and maintain it for long time by collaborations with others in the community. In contrast to the data models, KUJIRA is designed to be a package of modules that are as small as possible, by restricting the functions of each module to those essentially required for the analysis. KUJIRA is highly optimized for highthroughput NMR studies by the sophisticated subroutines working on Tcl/Tk and the external C programs utilized for



Fig. 7 (A) Graphical interface of the CYANA analysis module of KUJIRA, for the evaluation of fully automated NOE assignments carried out by CYANA. The module can load the exported log file for the CYANA automated NOE assignment calculation. The list-box represents the NOE assignment information from the CYANA log file for a certain peak eliminated by a large distance violation. The NOE assignment candidates are ordered by their generalized volume contribution, as determined by the automated NOE assignment algorithm CANDID (Herrmann et al. 2002) in CYANA. The buttons in the upper part of the interface are used to increase or decrease the peak ID number, to switch between the lists of unassigned and assigned NOE peaks, and to flip the displayed 2D spectrum strips by 90 degrees about the z-axis. The "Skip peaks" and "Show only" items serve to filter the peaks for which information can be displayed according to various criteria. (B) An example display of a typical artifact peak that has been eliminated for the fully automated NOE assignment. The 2D spectrum strips brought up by the Sync-Jump function of the CYANA analysis module show the narrow region of the <sup>15</sup>N edited NOESY spectrum, corresponding to the Lys55  $H_N$ -N $\alpha$ signal, alongside the spectrum strip showing the transposed position

the heavy tasks, which would not run fast in the interpreter based programming language. Owing to the compactness of the package, the installation of KUJIRA has been simplified and does not require any specific library or third party software, except for NMRView and Tcl/Tk, which are also simple and easy to install.

Based on our experience with a large number of NMR structure studies, we have established a robust

of the NOE peaks according to the assignment, Lys55 H<sub>N</sub>-Glu58 H<sub>N</sub>. The right panel represents expanded portions of the two 2D spectrum strips, showing the unassigned artifact peak at the position (7.9, 8.3, 123.1 ppm), while no peak is found at the transposed position of the NOE assignment (8.3, 7.9, 121.7 ppm). Using the CYANA analysis module with the skip function, the user can quickly access this peak and determine whether it is an artifact. (C) The graphical interface of the CYANA analysis module in the "Sort" mode, representing NOE peaks sorted, for instance, by their upper distance limit derived from the peak intensity. In the upper panel, all 2,262 assigned peaks derived from 3D<sup>13</sup>C edited NOESY are listed without any skip setting (only the top 20 peaks appear, because of the limited height of the list-box). The lower panel represents the subset of the NOE peaks obtained by skipping the peaks with an estimated <sup>1</sup>H-<sup>1</sup>H distance bound longer than 4.5 Å, or located closer than 0.1 ppm from the water line or the diagonal, or having a symmetrical consensus for the prime candidate of the NOE assignment. Only three NOE peaks selectively appear in the list. Strong NOE peaks lacking the symmetrical consensus of the NOE assignment would be very useful indicators of potential errors in the chemical shift assignments

and expeditious strategy for NMR protein structure determination using KUJIRA and CYANA, which represents an innovation over the conventional methods. The strategy, shown schematically in Fig. 9, is simplified into three analysis phases; namely, the early phase, "Preliminary assignment and structure analysis", the intermediate phase, "Refinement of assignment and structure analysis" and the final phase, "Finalization of



Fig. 8 (A) Graphical interface of the structure validation module in the secondary structure display mode (left panel). The module calculates the hydrogen-bond based secondary structure assignment in the specified NMR structures. The detected secondary structures are indicated by different colors: cyan:  $\beta$ -strand, magenta:  $\alpha$ -helix, and orange: 3<sub>10</sub>-helix. In the pop-up graphical interface on the right, the 2D Ramachandran plot analysis and the  $\phi$  and  $\psi$  dihedral angles of residue Val33 in 20 structure models are represented. (B) The graphical interface of the structure validation module in the side-chain structure analysis mode (left panel). The module calculates the average solvent accessible surface area for the side-chain of each

residue in the specified NMR structures. The residues with solvent accessible surface area values less than 30% are classified as being involved in the core of the protein, and are represented by sunken buttons. Problematic  $\chi^1/\chi^2$  dihedral angle pairs are indicated in different colors, based on their probability, as analyzed using a standard rotamer library; dark orange indicates rare (probability 1–5%), and dark magenta indicates very rare (less than 1%) conformations. In the pop-up graphical interface on the right, the 2D  $\chi^1/\chi^2$  plot analysis and the  $\chi^1$  and  $\chi^2$  dihedral angle values of Ile43 in 20 structure models are represented



Fig. 9 High-throughput strategy for NMR structure determinations based predominantly on NOE-based structural constraints, using KUJIRA and CYANA. Every stage includes all of the basic tasks for NMR analysis: interactive assessment and correction of chemical shift and NOE assignments and structure calculation. The guidelines are also indicated on the right side of the flow chart. The typical methods to collect NOE peaks for CYANA calculations are mentioned in the section "Materials and methods" describing the methods for the application example of ubiquitin. To evaluate the completeness of the chemical shift assignments, all of the main-chain

and side-chain <sup>1</sup>H, <sup>13</sup>C, and <sup>15</sup>N signals responsible for constructing the defined region of protein, such as main-chain, buried aliphatic and aromatic side-chain signals, should be involved. The signals that cannot be observed in the 3D NOESY because of chemical exchange or bad water suppression should be also considered to be "missing" signals. For the CYANA calculation in any stage of NMR analysis, all of the observed NOE peaks should be applied. To pass the finalization stage, the NOEs that could not be assigned by CYANA should not be clustered in a certain region of the calculated structure

assignment and structure analysis". The most remarkable feature of the strategy is that the chemical shift assignments and the structure determination cooperatively progress toward the final state of the analysis, rather than reaching the end result through a sequence of strictly consecutive steps.

### Preliminary assignment and structure analysis

In the early phase of the analysis, referred to as the "Preliminary assignment and structure analysis," the chemical shift assignments are nearly completed with KUJIRA prior to the first structure calculation by CYANA. The most crucial step in this analysis stage must be the sequencespecific main-chain signal assignments, since the following side-chain signal assignments and NOE peak assignments strongly rely on the assignments. Many automated sequence-specific assignment programs have been reported, based on a variety of assignment algorithms, such as Monte Carlo algorithms (Buchler et al. 1997; Leutner et al. 1998; Lukin et al. 1997), genetic algorithms (Bartels et al. 1996a, 1996b), exhaustive search algorithms (Andrec and Levy 2002; Atreya et al. 2000; Coggins and Zhou 2003; Güntert et al. 2000), heuristic comparisons to predicted shifts (Gronwald et al. 1998), and heuristic best-first algorithms (Hyberts and Wagner 2003; Li and Sanctuary 1997; Zimmerman et al. 1994; Zimmerman et al. 1997). The difficulties found with the automated assignment programs include several missing signals in 2D or 3D spectra, which would be encountered in the assignments of any NMR samples even those where the  ${}^{1}H{-}^{15}N$  HSQC spectra show well-separated signals. The existence of minor signals, which might be derived from exchanges between major/ minor conformations, and some contamination would also be obstacles for the assignment jobs. One of the biggest advantages of the semi-automated main-chain signal assignment modules in KUJIRA is that the program QuickAssign runs very fast and provides reasonably accurate results. As shown in Table 1, the four stages of the iterative assignment jobs were finished within 1 sec on the SGI workstation (MIPS14000, 500 MHz), and no assignment error was found. This high-performance can help the user to accelerate the interactive work on the graphical interfaces, and thus to find and correct the problems with the assignments readily. Typically, in our projects, an assignment time of 1-3 h was required for the complete the assignments of main-chain and  ${}^{1}H_{\alpha}$  and  ${}^{1}H_{\beta}$  signals using KUJIRA. The remaining side-chain signals were manually assigned, using the chemical shift database module of KUJIRA, to achieve more than 90% of <sup>1</sup>H, <sup>15</sup>N, and <sup>13</sup>C signals. This process typically takes for 5-8 h, if HCCH-TOCSY and <sup>13</sup>C-edited NOESY spectra with reasonable quality are available.

After automated peak picking of the 3D NOESY spectra and filtering of the noise peaks, the first CYANA calculation is performed. The major purpose of the CYANA calculation(s) in this phase is to obtain tentative structures with correct chain-folds and core-packing and to eliminate obviously erroneous NOE peaks. Displaying peak boxes labeled with NOE assignment information on the 3D NOESY spectra streamlines this task. Using the CYANA analysis module of KUJIRA, which can incorporate the results of the automated NOE assignment by CYANA and provides the Sync-Jump commands based on the assignments, the user can readily access the problematic peaks and quickly determine whether they are artifacts.

Refinement of assignment and structure analysis

In the middle phase of the analysis, referred to as the "Refinement of assignment and structure analysis," entries in the chemical shift table are corrected, based on the spectrum positions of the NOE peaks without assignments. The values in the chemical shift table that deviate slightly from the positions of a cluster of NOE peaks may suggest that a minor error exists in the table. Such a minor error might not be serious enough to disrupt the global fold of the calculated structure; however, because of the error, CYANA may fail to assign the indirect dimension of the NOE peak, if the related atoms are close together in the calculated structure. This may result in a local fault in the calculated structure, and therefore, it should be corrected in this analysis stage. In particular, a group of unassigned NOE peaks that are apparently clustered and aligned on a certain x-z axis position, as illustrated in Fig. 10A, is often indicative of a slight error in the chemical shift table. For instance, based on such aligned, unassigned peaks, a methylene group that was mistakenly assumed to yield degenerate signals can effectively be recognized as separate methylene signals. Owing to the robust NOE assignment capability of CYANA, many of the spurious NOEs are successfully removed at the end of the middle phase of the analysis. To proceed to the final stage of the analysis, we nevertheless have to consider the possibility that a very small number of artifact peaks and some missing signals might have evaded the manual analysis. These artifact peaks would more seriously distort a loosely defined structure, such as surface, loop and turn regions, rather than a well-defined region. Therefore, the refinement work in the middle phase of the structure analysis aims at identifying the few remaining artifact peaks and the inaccuracies of a small number of chemical shifts among the thousands in the NMR data sets. In most cases, the remaining artifact peaks tend to be related to signals that are both nearly degenerate in the 2D-HSQC spectrum



Fig. 10 (A) Example of a group of aligned peaks, derived from a 3D  $^{13}$ C edited NOESY, which were unassigned in the fully automated NOE assignment carried out by CYANA. The labels "X0/0" indicate peaks that were unassigned because no corresponding signal was found for the direct and/or indirect dimensions in the NOE assignment. The 2D spectrum strip shows the region close to Val77-H $\gamma$ 1, where the clustered peaks are located slightly away from the position specified in the chemical shift table. Using the CYANA analysis module applied with the skip status "show only no corresponding signal," the user can easily and quickly access a group of unassigned NOE peaks. In combination with the peak labeling function, the user can straightforwardly notice inaccuracies in the chemical shift assignment data. (B) A NOE assignment lacking

"symmetry." A NOE peak in the 2D strip corresponding to the signal of Glu41-H $\beta$ 2, derived from 3D <sup>13</sup>C edited NOESY, has been assigned to Lys40-HN (lower part of the left panel indicated by the label "40n/41b2"). No NOE peak was found on the transposed position of the NOE assignment (pointed out by the arrow and the dotted box in the right panel); Glu41-H $\beta$ 2 on the 2D spectrum strip of Lys40-H<sub>N</sub> in the 3D <sup>15</sup>N-edited NOESY spectrum. The erroneous NOE assignment was caused by mistakenly assuming the degeneracy of the two  $\gamma$ -methylene proton signals of Gln48 during the chemical shift assignment. Using the CYANA analysis module of KUJIRA, the problem was noticed in the 7th stage of the tutorial analysis, and was fixed in the Chemical shift database module. See text for details

projection, and originating from atoms that are spatially proximate in the protein structure. Such peaks might not cause a large violation of the NOE assignment, which is based on both the chemical shifts and inter-proton distances, and may therefore lead CYANA to apply the corresponding distance constraint in the structure calculations. The work required to identify these artifact peaks among the few thousand peaks can be awfully tedious, even if the user carefully operates the spectrum windows, unless some mechanisms help the user to intuitively notice them. The most remarkable aspect of the CYANA analysis module in KUJIRA is the function to evaluate the symmetrical consensus of the NOE assignment, by detection of the peak intensity at the transposed position deduced from the NOE assignment. This module highlights the assignments of potentially spurious NOE peaks, if the spectral intensity at the transposed position is below a user-specified threshold (see Fig. 7C).

#### Finalization of assignment and structure analysis

In the final phase of the analysis, referred to as the "Finalization of assignment and structure analysis," the Structure quality assessment module is used to pinpoint the possible existence of remaining problems in the chemical shift assignments and the NOE peak table. The Structure quality assessment module calculates the secondary structure, the solvent accessible surface area of the side-chain groups, and the order parameter of the dihedral angles. Based on the structural information, the user can readily infer which residues are responsible for constructing the protein structure. The module also has a function to visualize the Ramachandran plot for the  $\phi$  and  $\psi$  angles, and an analogous plot for the  $\chi^1$  and  $\chi^2$  angles. By reference to standardized rotamer libraries, the user can identify the residues that have a conformational problem. Figure 10B shows a NOE peak, found in the NOE peak table, that apparently lacks the symmetrical consensus of its NOE assignment, as detected by the CYANA analysis module, and that generated a spurious distance constraint. It would be very time-consuming to find this kind of problem hidden in the enormous amount of NMR data by the conventional methods; however, the combination of the above-mentioned strategies can make it possible, in a systematic and efficient manner.

Quick and accurate structure determination accomplished by a beginner

As an application example for the case of NMR analysis, the solution structure of human ubiquitin was determined by a post-graduate student who lacked experience in protein structure determination, but was well educated in biochemistry and organic chemistry. The analysis was a tutorial for learning structure analysis, according to the new strategy using KUJIRA and CYANA, under the supervision of an expert NMR scientist. The details of the analysis, summarized in Table 2, comprised nine stages: stages 1–3, corresponding to "Preliminary assignment and structure analysis", stages 4-6, "Refinement of assignment and structure analysis", and stages 7-9, "Finalization of assignment and structure analysis." The semi-automatic assignments for the main-chain and some side-chain signals, including  ${}^{1}H_{\alpha}$  and  ${}^{1}H_{\beta}$  protons, were assigned by means of the described methods in approximately 3 h. The remaining side-chain signal assignments were finished in 5 h, and the first CYANA calculation was performed (stage 1). At this stage, more than 90% of the  ${}^{1}$ H,  ${}^{15}$ N, and  ${}^{13}$ C signals that could be observed in the measured 2D and 3D spectra were assigned. Another 4 days were spent for eight stages of CYANA calculations, to further refine the chemical shift assignments and the NOE peak table and structure quality assessments, using the KUJIRA modules. After the tutorial analysis work, the accuracy of the assigned chemical shifts and the determined structure were assessed by comparison with the reference structure (1D3Z from PDB) and the reference chemical shifts (bmrb6457.str from BMRB). The accuracy of the assigned chemical shifts was examined by counting the number of incorrect values, with errors from the reference data greater than 0.1, 1.0, and 1.0 ppm for the <sup>1</sup>H, <sup>13</sup>C, and <sup>15</sup>N signals, respectively. Except for the signals of the two N-terminal residues and a His residue, for which the chemical shifts might be affected by slight differences in the protein construct and the experimental conditions, more than 97% of the chemical shifts (779 out of 796) determined by the beginner nearly matched those in the reference data. A remarkable result, shown in Table 2, is that the structure of the first CYANA calculation already yielded the correct chain-fold and corepacking, as compared with the reference solution structure of human ubiquitin, showing 1.02 Å and 1.20 Å RMSD values for the main-chain and side-chain structures, respectively. All  $\chi^1$  angles of the residues involved in the hydrophobic core were also correct, from the second stage onwards. These facts strongly support the high reliability of CYANA to calculate the correct structure, in spite of the initially incomplete NMR data. The additional structural constraints, the 86 dihedral angle constraints derived from the TALOS analysis (applied in stages 8-9) and the 10 stereo-specific assignments for nine residues (applied in stages 6-9), did not significantly improve the accuracy of the calculated structures. Alternatively, the chemical shifts of five signals were corrected, and more than 100 erroneous NOE peaks were removed, using the CYANA analysis module in KUJIRA in stages 6-9. In the final CYANA calculation (stage 9), the completeness of the NOE assignments reached more than 97%, involving no NOE peak eliminated by a violation greater than 1.5 Å. No significant deviations from the reference assignments were found in the chemical shift assignments after stage 7. As compared with the reference structure, the structures obtained in the final stage exhibit high accuracy, with low RMSD values for the main-chain (0.66 Å) and side-chain (0.80 Å) atoms. Remarkably, through all of the stages, the increase in the accuracy for the chemical shift assignments agreed well with the increase in the completeness for the automated NOE assignments. This clearly indicates that the high completeness and accuracy of the chemical shift assignments are related to the completeness of the NOE assignment, and supports the accuracy of the assigned chemical shifts, which are responsible for the structure determination. It should be emphasized that the analyst was allowed to concentrate on monitoring the completeness of the chemical shifts and NOE peak tables and the structural faults found in the calculated structures, owing to the fact

| Table                                                | 2 Summary of s                                                           | structure analysis                                                  | s stages                                      |                                   |                                                          |                                                                                                       |                                                                                                               |                                                     |                                                                         |                                                                              |                                                     |
|------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------|-----------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------|
| Stages <sup>a</sup>                                  | Parameters for<br>performed by                                           | r structure calcul<br>CYANA                                         | lations                                       | NOE as                            | signments                                                | Incorrect assignments in ${}^{1}$ H, ${}^{15}$ N, and ${}^{13}$ C signals $i$ 9th stage <sup>f</sup>  | the chemical shift values of<br>as compared with those of the                                                 | Deviation fro                                       | m reference stru                                                        | icture                                                                       |                                                     |
|                                                      | Final target function $(Å^2)$                                            | Main-chain<br>RMSD <sup>b</sup> (Å)                                 | Violation <sup>c</sup><br>>0.2 Å              | NOE<br>peaks <sup>d</sup>         | Completeness <sup>e</sup><br>(%)                         | >0.03 ppm for <sup>1</sup> H,<br>>0.3 ppm for <sup>13</sup> C and <sup>15</sup> I                     | >0.06 ppm for $^{1}$ H,<br>N >0.6 ppm for $^{13}$ C and $^{15}$ N                                             | Main-chain<br>RMSD <sup>g</sup> (Å)                 | Side-chain<br>RMSD <sup>g</sup> (Å)                                     | $\chi^{\rm lh}$<br>deviation<br>>60deg                                       | $\chi^{2h}$ deviation<br>>60deg                     |
| Prelim                                               | nary assignment                                                          | t and structure a                                                   | malysis                                       |                                   |                                                          |                                                                                                       |                                                                                                               |                                                     |                                                                         |                                                                              |                                                     |
| 1                                                    | 11.96                                                                    | 0.34                                                                | 27                                            | 4917                              | 82.3                                                     | 55                                                                                                    | 44                                                                                                            | 1.02                                                | 1.20                                                                    | 12(1)                                                                        | 4(3)                                                |
| 2                                                    | 0.71                                                                     | 0.37                                                                | 0                                             | 3334                              | 89.1                                                     | 32                                                                                                    | 28                                                                                                            | 0.90                                                | 1.04                                                                    | 3(0)                                                                         | 4(0)                                                |
| 3                                                    | 0.79                                                                     | 0.33                                                                | 0                                             | 3203                              | 94.0                                                     | 30                                                                                                    | 26                                                                                                            | 1.00                                                | 1.11                                                                    | 3(0)                                                                         | 2(2)                                                |
| Refinen                                              | rent of assignme                                                         | ant and structure                                                   | : analysis                                    |                                   |                                                          |                                                                                                       |                                                                                                               |                                                     |                                                                         |                                                                              |                                                     |
| 4                                                    | 0.84                                                                     | 0.31                                                                | 1                                             | 3274                              | 92.5                                                     | 13                                                                                                    | 10                                                                                                            | 0.93                                                | 1.02                                                                    | 4(0)                                                                         | 2(1)                                                |
| 5                                                    | 0.84                                                                     | 0.28                                                                | 0                                             | 3229                              | 94.8                                                     | 5                                                                                                     | 4                                                                                                             | 0.78                                                | 0.88                                                                    | 4(0)                                                                         | 2(2)                                                |
| 9                                                    | 0.31                                                                     | 0.27                                                                | 0                                             | 3281                              | 93.0                                                     | 5                                                                                                     | 4                                                                                                             | 0.81                                                | 0.91                                                                    | 3(0)                                                                         | 2(1)                                                |
| Finaliz                                              | ation of assignm                                                         | vent and structur                                                   | e analysis                                    |                                   |                                                          |                                                                                                       |                                                                                                               |                                                     |                                                                         |                                                                              |                                                     |
| 7                                                    | 0.44                                                                     | 0.29                                                                | 0                                             | 3167                              | 96.8                                                     | 3                                                                                                     | 2                                                                                                             | 0.83                                                | 0.92                                                                    | 3(0)                                                                         | 1(2)                                                |
| 8                                                    | 0.68                                                                     | 0.30                                                                | 0                                             | 3164                              | 96.9                                                     | 0                                                                                                     | 0                                                                                                             | 0.79                                                | 0.89                                                                    | 3(0)                                                                         | 3(1)                                                |
| 6                                                    | 0.55                                                                     | 0.29                                                                | 0                                             | 3157                              | 97.1                                                     | I                                                                                                     | I                                                                                                             | 0.66                                                | 0.80                                                                    | 2(0)                                                                         | 3(1)                                                |
| Parame                                               | ters related to th                                                       | he calculated stru                                                  | uctures are b                                 | ased on t                         | the last (7th) CY                                        | (ANA calculation cycle o                                                                              | of each stage                                                                                                 |                                                     |                                                                         |                                                                              |                                                     |
| <sup>a</sup> In the<br>while i<br>specific<br>Leu57, | e stages 1–3, 50<br>n stages 4–9, 10<br>assignments we<br>Leu63, and Leu | structures were c<br>0 structures were<br>ere applied in ste<br>174 | calculated in<br>e calculated<br>ages 6–9 for | each CY and 20 st the $\beta$ -me | ANA calculation<br>tructures were se<br>thylene groups ( | n cycle, and the 10 structu sleeted. $\phi$ and $\psi$ dihedral of Met8, Gln9, Phe11, Le <sup>1</sup> | tres with the lowest target fund<br>angle constraints derived from<br>$1022$ and Glu25, the $\gamma$ -methyle | ctions were seld<br>n TALOS pred<br>ene groups of C | ected for the sub<br>lictions were ap <sub>1</sub><br>Jln9 and Ile10, a | sequent calconder the sequent calconder $\beta$ is stage and the $\delta$ me | alation cycles,<br>s 8–9. Stereo-<br>thyl groups of |
| <sup>b</sup> RMS                                     | D values to the                                                          | mean coordinate                                                     | es calculated                                 | for the t                         | backbone atoms,                                          | N, $C^{\alpha}$ , and C' of residues                                                                  | s 8-13, 20-51, 53-73, and 76                                                                                  | ó−79 after supe                                     | rposition of the                                                        | calculated st                                                                | ructures                                            |
| ° Num                                                | ber of used dista                                                        | ance constraints                                                    | with average                                  | violatio                          | n greater than 0.                                        | 2 Å                                                                                                   |                                                                                                               |                                                     |                                                                         |                                                                              |                                                     |
| d Num                                                | ber of cross pea                                                         | ks from the 3D                                                      | <sup>15</sup> N- and <sup>13</sup> C          | C-edited 1                        | NOESY spectra                                            | that were used as input fc                                                                            | or the automated NOE assigni                                                                                  | ment with CYA                                       | ANA                                                                     |                                                                              |                                                     |
| e Percé                                              | intage of NOES'                                                          | Y cross peaks as                                                    | ssigned by C                                  | YANA r                            | elative to the tot                                       | tal number of NOESY cro                                                                               | oss peaks                                                                                                     |                                                     |                                                                         |                                                                              |                                                     |
| f Num                                                | ber of chemical                                                          | shift assignment                                                    | s that deviate                                | e from th                         | nose of the final                                        | (9th) stage by more than                                                                              | the given cutoffs                                                                                             |                                                     |                                                                         |                                                                              |                                                     |
|                                                      |                                                                          |                                                                     |                                               | ,                                 |                                                          |                                                                                                       |                                                                                                               |                                                     |                                                                         |                                                                              |                                                     |

<sup>g</sup> Deviation of the calculated CYANA structure from the reference structure (1D3Z). RMSD values are between the mean coordinates of the main-chain atoms N, C<sup>z</sup>, and C', and main-chain and short range side-chain atoms (C', N, C $\alpha$ , C $\beta$  and C $\gamma$ ) of residues 8–13, 20–51, 53–73, and 76–79, after superposition of the calculated structures

<sup>h</sup> Number of residues with  $\chi^1$  or  $\chi^2$  angles deviating more than 60 degrees from the average value in the reference structure. Numbers in parentheses are for the residues in the hydrophobic core of the protein with less than 30% solvent accessible surface area

that the completeness of the chemical shift assignments and the accuracy of the calculated structure were less effective for the subsequent analysis stage. This is the biggest advantage of this new strategy, which makes highthroughput NMR structure studies possible.

Signal assignment and structure validations after the final stage of the structure analysis

The validations of the assigned chemical shifts and the calculated structures have been the most important challenge for the NMR scientist in the last a few decades (Spronk et al. 2004). Several methods are commonly used for the validation; however, there is no universal method to integrate the validation protocols in a small package. Throughout the structural analyses of more than 1,000 protein samples by our research group, we have not seen any significant error in the chain-fold in the determined solution structure of a small (smaller than 20 kDa), stable and monomeric protein that yielded good spectrum quality by our established analysis strategy. It would be nearly impossible to perform an analysis that satisfies our criteria well (see Fig. 9), and then end with a greatly incorrect structure. This is mainly due to the strategy, which is empowered by the intensive corrections of the chemical shift and NOE peak tables, to achieve nearly complete NOE assignments by CYANA. In other words, we have demonstrated that the idea would be feasible for samples that are suitable for a high-throughput NMR analysis with the highly automated strategy. The user is nevertheless advised to use some other validation tools such as ProCheck-NMR (Laskowski et al. 1996), WHATIF (Hooft et al. 1996; Rodriguez et al. 1998; Vriend 1990), QUEEN (Nabuurs et al. 2003), AVS (Moseley et al. 2004) or Protein-RPF (Huang et al. 2005), or tools working with additional experiments, such as residual dipolar coupling data, iDC (Wei and Werner 2006), all of which may help to avoid unforeseen problems in the assigned chemical shifts and the calculated structures.

#### Conclusion

Although CYANA is quite reliable to determine the correct structure, the few remaining faults in the chemical shifts and the NOE peak table must be addressed, in order to finalize the structure analysis. We developed a variety of modules, integrated in one software package which can seamlessly access the chemical shift table, the NOE assignment carried out by CYANA, and the calculated structure, and can greatly reduce the tediousness of the structure determination. These interactive modules implemented in KUJIRA are particularly useful to identify and correct the unassigned signals and the spurious NOEs that exist in the enormous amount of NMR data. We have established a new strategy using KUJIRA and CYANA, and have demonstrated its feasibility by an NMR structure study of a small protein by a non-expert, showing that accurate determinations of the chemical shifts and the structure can be achieved in a few weeks. The new strategy allows the NMR scientist to concentrate on monitoring the completeness of the NOE assignments and the structural problems in the NMR structure analysis, which will facilitate high-throughput studies by NMR.

# Software availability

The KUJIRA software, installation instructions and examples are available at http://www.protein.gsc.riken.jp/Concept/kujira.html.

Acknowledgements We thank Drs. Toshio Yamazaki, Yutaka Muto, Fumiaki Hayashi, Takashi Nagata, Fahu He, Yufeng Wei and Prof. Milton, H. Werner for their valuable comments and discussions, and Prof. Yo Matsuo for his helpful advice regarding the algorithm for the calculation of the solvent accessible surface area. We also thank Mr. Masatomo Tanaka and Dr. Takuma Kasai for providing the information from the structural analyses of human ubiquitin. This work was supported by the RIKEN Structural Genomics/Proteomics Initiative (RSGI), the National Project on Protein Structural and Functional Analyses, Ministry of Education, Culture, Sports, Science and Technology of Japan.

# References

- Altieri AS, Byrd RA (2004) Automation of NMR structure determination of proteins. Curr Opin Struct Biol 14(5):547–553
- Andrec M, Levy RM (2002) Protein sequential resonance assignments by combinatorial enumeration using 13C alpha chemical shifts and their (i, i-1) sequential connectivities. J Biomol NMR 23(4):263–270
- Atreya HS, Sahu SC, Chary KV, Govil G (2000) A tracked approach for automated NMR assignments in proteins (TATAPRO). J Biomol NMR 17(2):125–136
- Baran MC, Moseley HN, Sahota G, Montelione GT (2002) SPINS: standardized protein NMR storage. A data dictionary and objectoriented relational database for archiving protein NMR spectra. J Biomol NMR 24(2):113–121
- Baran MC, Huang YJ, Moseley HN, Montelione GT (2004) Automated analysis of protein NMR assignments and structures. Chem Rev 104(8):3541–3556
- Bartels C, Xia TH, Billeter M, Güntert P, Wüthrich K (1995) The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J Biomol NMR 6:1–10
- Bartels C, Billeter M, Güntert P, Wüthrich K (1996a) Automated sequence-specific NMR assignment of homologous proteins using the program GARANT. J Biomol NMR 7:207–213
- Bartels C, Billeter M, Güntert P, Wüthrich K (1996b) GARANT-A general algorithm for resonance assignment of multidimensional nuclear magnetic resonance spectra. J Comput Chem 18:139–149
- Buchler NE, Zuiderweg ER, Wang H, Goldstein RA (1997) Protein heteronuclear NMR assignments using mean-field simulated annealing. J Magn Reson 125(1):34–42

- Coggins BE, Zhou P (2003) PACES: protein sequential assignment by computer-assisted exhaustive search. J Biomol NMR 26(2):93– 111
- Cornilescu G, Marquardt JL, Ottiger M, Bax A (1998) Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J Am Chem Soc 120(27):6836– 6837
- Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13(3):289–302
- Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293
- Fogh R, Ionides J, Ulrich E, Boucher W, Vranken W, Linge JP, Habeck M, Rieping W, Bhat TN, Westbrook J, Henrick K, Gilliland G, Berman H, Thornton J, Nilges M, Markley J, Laue E (2002) The CCPN project: an interim report on a data model for the NMR community. Nat Struct Biol 9(6):416–418
- Fogh RH, Boucher W, Vranken WF, Pajon A, Stevens TJ, Bhat TN, Westbrook J, Ionides JM, Laue ED (2005) A framework for scientific data modeling and automated software development. Bioinformatics 21(8):1678–1684
- Goddard TD, Kneller DG (2001) Sparkey 3. University of California, San Francisco
- Gronwald W, Kalbitzer HR (2004) Automated structure determination of proteins by NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 44:33–96
- Gronwald W, Kirchfofer R, Gorler A, Kremer W, Ganslmeier B, Neidig KP, Kalbitzer HR (1998) CAMRA: chemical shift based computer aided protein NMR assignments. J Biomol NMR 12:395–405
- Güntert P (2003) Automated NMR protein structure calculation. Prog Nucl Magn Reson Spectrosc 43:105–125
- Güntert P, Mumenthaler C, Wüthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273(1):283–298
- Güntert P, Salzmann M, Braun D, Wüthrich K (2000) Sequencespecific NMR assignment of proteins by global fragment mapping with the program MAPPER. J Biomol NMR 18(2):129–137
- Helgstrand M, Kraulis P, Allard P, Hard T (2000) Ansig for Windows: an interactive computer program for semiautomatic assignment of protein NMR spectra. J Biomol NMR 18(4):329– 336
- Herrmann T, Güntert P, Wüthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319(1):209–227
- Hooft RW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381(6580):272
- Huang YJ, Powers R, Montelione GT (2005) Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. J Am Chem Soc 127(6):1665–1674
- Hyberts SG, Wagner G (2003) IBIS—a tool for automated sequential assignment of protein spectra from triple resonance experiments. J Biomol NMR 26(4):335–344
- Jee J, Güntert P (2003) Influence of the completeness of chemical shift assignments on NMR structures obtained with automated NOE assignment. J Struct Funct Genomics 4(2–3):179–189
- Johnson BA, Blevins RA (1994) NMRView: a computer program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614

- Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637
- Kigawa T, Yabuki T, Yoshida Y, Tsutsui M, Ito Y, Shibata T, Yokoyama S (1999) Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett 442(1):15–19
- Kigawa T, Yabuki T, Matsuda N, Matsuda T, Nakajima R, Tanaka A, Yokoyama S (2004) Preparation of *Escherichia coli* cell extract for highly productive cell-free protein expression. J Struct Funct Genomics 5(1–2):63–68
- Kirby NI, DeRose EF, London RE, Mueller GA (2004) NvAssign: protein NMR spectral assignment with NMRView. Bioinformatics 20(7):1201–1203
- Kraulis PJ (1989) ANSIG-a program for the assignment of protein H-1 2D NMR spectra by interactive computer graphics. J Magn Reson 24:627–633
- Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8(4):477–486
- Lee B, Richards FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55:379–400
- Leutner M, Gschwind RM, Liermann J, Schwarz C, Gemmecker G, Kessler H (1998) Automated backbone assignment of labeled proteins using the threshold accepting algorithm. J Biomol NMR 11(1):31–43
- Li KB, Sanctuary BC (1997) Automated resonance assignment of proteins using heteronuclear 3D NMR. 2. Side chain and sequence-specific assignment. J Chem Inf Comput Sci 37(3):467–477
- Lovell SC, Word JM, Richardson JS, Richardson DC (2000) The penultimate rotamer library. Proteins 40(3):389–408
- Lukin JA, Gove AP, Talukdar SN, Ho C (1997) Automated probabilistic method for assigning backbone resonances of (13C,15N)-labeled proteins. J Biomol NMR 9(2):151–166
- Moseley HN, Sahota G, Montelione GT (2004) Assignment validation software suite for the evaluation and presentation of protein resonance assignment data. J Biomol NMR 28(4):341–355
- Nabuurs SB, Spronk CA, Krieger E, Maassen H, Vriend G, Vuister GW (2003) Quantitative evaluation of experimental NMR restraints. J Am Chem Soc 125(39):12026–12034
- Neidig KP, Geyer M, Görler A, Antz C, Saffrich R, Beneicke W, Kalbitzer HR (1995) Automated peak integration in multidimensional NMR spectra by an optimized iterative segmentation procedure. J Biol NMR 6:255–270
- Nilges M, O'Donoghue SI (1998) Ambiguous NOEs and automated NOE assignment. Prog Nucl Magn Reson Spectrosc 32:107–139
- Rodriguez R, Chinea G, Lopez N, Pons T, Vriend G (1998) Homology modeling, model and software evaluation: three related resources. Bioinformatics 14(6):523–528
- Slupsky CM, Boyko RF, Booth VK, Sykes BD (2003) Smartnotebook: a semi-automated approach to protein sequential NMR resonance assignments. J Biomol NMR 27(4):313–321
- Spronk CA, Nabuurs SB, Krieger E, Vriend G, Vuister GW (2004) Validation of protein structures derived by NMR spectroscopy. Prog Nucl Magn Reson Spectrrosc 45(3–4):315–337
- Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59(4):687–696
- Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8(1):52–56, 29

- Wei Y, Werner MH (2006) iDC: a comprehensive toolkit for the analysis of residual dipolar couplings for macromolecular structure determination. J Biomol NMR 35(1):17–25
- Zimmerman D, Kulikowski C, Wang L, Lyons B, Montelione GT (1994) Automated sequencing of amino acid spin systems in proteins using multidimensional HCC(CO)NH-TOCSY spec-

troscopy and constraint propagation methods from artificial intelligence. J Biomol NMR 4(2):241–256  $\,$ 

Zimmerman DE, Kulikowski CA, Huang Y, Feng W, Tashiro M, Shimotakahara S, Chien C, Powers R, Montelione GT (1997) Automated analysis of protein NMR assignments using methods from artificial intelligence. J Mol Biol 269(4):592–610